
REDP0022

International Technical Support Organization

http://www.redbooks.ibm.com

Customizing Net.Commerce Hosting Server

Trond Norderhaug, Van W. Landrum, Carmen Beavers, Lilien Lam, Daesung Chung

Customizing Net.Commerce Hosting Server

November 1999

REDP0022

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (November 1999)

This edition applies to 3.12.2 of IBM Net.Commerce Hosting Server for use with the IBM AIX 4.3.2.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix H, “Special Notices” on page 207.

Take Note!

Contents

Figures . vii

Tables. .ix

Preface .xi
The Team That Wrote This Redbook . xi
Comments Welcome . xiii

Chapter 1. The NCHS Plug-In . 1
1.1 Overview . 1
1.2 New merchant tool features . 2
1.3 Installing the Plug-in on an existing NCHS system 7
1.4 Migrating on AIX. 9

Chapter 2. Overview of NCHS customization . 13
2.1 Overview XML in NCHS Plugin. 13

2.1.1 Introduction to XML . 13
2.1.2 XML configuration files in NCHS. 15

2.2 Impact of customizations . 15

Chapter 3. NCHS advanced customization . 17
3.1 Overview . 17
3.2 The merchant store model . 18

3.2.1 Creating a new store . 18
3.2.2 Changing the default store layout . 19
3.2.3 The merchants HTML directory. 20
3.2.4 Publishing a store . 21

3.3 Changing shopping flow . 25
3.3.1 Default Shopping and checkout flow . 25
3.3.2 Customizing the default shopping flow . 30

3.4 Adding a new function to NCHS-"Gift message" exmaple 34
3.4.1 MultiPurpose Code Generation language (MPG) 35
3.4.2 Add/Remove a menu item in the merchant tool. 36
3.4.3 Change the size of the merchant tool window 38
3.4.4 A new Net.Data macro for the merchant tool 40
3.4.5 Modify the checkout flow . 44
3.4.6 Adjust the order details page . 47

3.5 Creating multiple default store layouts . 51
3.6 Customizing the process to sell a merchant store. 56

3.6.1 Selling a merchant store . 57
3.6.2 Try and Buy . 64
© Copyright IBM Corp. 1999 iii

3.7 Adding mall-wide navigation feature . 64
3.8 Different levels of service by each merchant 72
3.9 Changing store creation process . 83

3.9.1 Introduction . 83
3.9.2 Changing store creation process . 84

3.10 Restricting creation of merchant store . 89
3.10.1 Introduction . 89
3.10.2 Restricting creation of merchant store 90

Appendix A. Net.Data macro for the category items page 111

Appendix B. Net.Data macros for the merchant tool 119

Appendix C. Net.Data macro for the checkout flow 125

Appendix D. Source code for AddGiftMessage OF 139

Appendix E. Template file for the order details page 145

Appendix F. A MultiPurpose Code Generation language 159
F.1 Purpose. 159
F.2 Introduction . 159

F.2.1 What is MPG?. 159
F.2.2 Why MPG? . 161

F.3 Data Model . 162
F.3.1 Declaring model variables. 162
F.3.2 Creating the model . 163
F.3.3 Creating the model from a file . 165

F.4 Language Elements . 166
F.4.1 Lexical Structure . 167
F.4.2 Declarations . 169
F.4.3 Data Types . 169
F.4.4 Expressions and Operators . 169
F.4.5 Statements . 171
F.4.6 Procedures . 175
F.4.7 Transformations . 175
F.4.8 4.10 Including other templates . 180

Appendix G. Customization of NCHS on Windows NT 181
G.1 Customizing store creation process on Windows NT 181
G.2 Restricting creation of merchant store on Windows NT 185
G.3 National language support . 205
iv Exploring Net.Commerce Hosting Server

Appendix H. Special Notices . 207

How to Get ITSO Redbooks . 211
IBM Redbook Fax Order Form . 212

Index . 213

ITSO Redpaper Evaluation . 215
 v

vi Exploring Net.Commerce Hosting Server

Figures

1. Merchant tool of Plug-In. 3
2. useful links menu of new merchant tool. 4
3. navigation bar menu of new merchant tool . 5
4. New catalog editor . 6
5. Remote content of a product . 6
6. manage orders menu of new merchant tool . 7
7. Relationship among xml files . 15
8. The publish window . 22
9. Shopping flow and checkout flow of the CSP store model 26
10. Category items page of the CSP store model . 27
11. Product page of the CSP store model . 28
12. Shopping cart page of the CSP store model . 29
13. Shopping flow after adding Quick Order button . 31
14. Category items page after replacing Order button with Quick Order button32
15. Merchant tool with new menu item . 38
16. The merchant tool with no vertical scroll bar . 40
17. Merchant tool gift message flow . 43
18. The new gift message window. 44
19. the manage orders feature in the Manage Your Store tab. 48
20. The order details page displaying the gift message. 49
21. Create Store Logon Screen. . 54
22. View Sample Stores Screen. 56
23. Merchant Tool with Buy this store option. . 57
24. Before mall wide navigartion feature is created . 65
25. Mall Wide Navigation Feature added. 66
26. The Mall page with a shop selected. 67
27. A Mall Page . 70
28. Service Store . 73
29. Result of selecting Remote Content . 74
30. Additional service menu item is added . 76
31. When the merchant with no authorization selects the Additional service link
78
32. The Shopping Cart page when the merchant chooses to purchase access79
33. Payment Information and Checkout page (ord_ok.d2w) 80
34. You now have access. 81
35. After a successful Purchase . 83
36. Customizing store creation flow . 84
37. Store creation form. 88
38. Newly added Store Information form. . 89
39. CHS services store logon screen. 91
© Copyright IBM Corp. 1999 vii

40. Obtaining the Add to Shopping Cart link.. 92
41. New store creation access screen. . 97
42. Store creation form. 184
43. Newly added Store Information form. . 185
44. CHS services store logon screen. 186
45. Obtaining the Add to Shopping Cart link.. 187
46. New store creation access screen. . 192
viii Exploring Net.Commerce Hosting Server

Tables

1. MADDFEATURE: Merchant Additional Feature Table 42
© Copyright IBM Corp. 1999 ix

x Exploring Net.Commerce Hosting Server

Preface

This paper gives hints and tips to customize Net.Commerce Hosting Server.
The customization scenarios discussed in the paper are based on real world
requirements. The Plug-in tool newly introduced in Net.Commerce Hosting
Server gives users more flexibility to customize Net.Commerce Hosting
Server upon their requirements.

XML and MPG(MultiPurpose code Generation language) are the two
essential skills in understanding the ideas presented in this paper. XML is an
emerging standard in e-commerce and there are a lot of technical materials to
refer to. We included some useful URLs in 2.1.1, “Introduction to XML” on
page 13. Information about MPG cab be found in Appendix F, “A
MultiPurpose Code Generation language” on page 159. However, MPG is
internally used in Net.Commerce Hosting Server. Please note that IBM does
not guarantee to provide any technical support for MPG.

This paper consists of three chapters. The first chapter gives an introduction
to the Plug-in tool as well as tips to install it on AIX. The second chapter gives
an overview of how XML is used in NCHS. The third chapter gives various
tips to customize NCHS.

The Team That Wrote This Redbook

This redpaper was produced by a team of specialists from around the world
working at the International Technical Support Organization Austin Center.

Trond Norderhaug is a advisory IT specialist in Norway. He/she has 10
years of experience in system integration/application development. His areas
of expertise include computer telephony integration(Corepoint),
databases(Oracle, DB2, Interbase), application development (C++, Delphi,
VB, Perl, Java).

Van W. Landrum is a Technical Support Specialist in the Dallas Systems
Center supporting Net.Commerce for IBM in the Americas Advance Technical
Support (ATS) organization. He wrote the SmoothStart for Net.Commerce V3
on NT as well as the updated SmoothStart enhancements for IBM Global
Services. He has 8 years of experience in the Internet and holds a degree in
Business Computer Information Systems from the The University of North
Texas. His areas of expertise include eCommerce, Net.Commerce, and
relational databases. Before joining ATS, he was the Business Manager for
IBM’s Personal Systems Magazine and /AIXtra Magazine.
© Copyright IBM Corp. 1999 xi

Carmen Beavers is a Net.Commerce/Internet Developer in Frederick,
Maryland, USA. She has 5 years of experience in the Internet Development
field. She holds a degree in Computer Science from Virginia Polytechnic
Institute and State University. She has worked at Aureus Solutions, Inc., (an
IBM Business Partner), for one year. Her areas of expertise include
Net.Commerce and web development. She has written primarily on
customizing Net.Commerce Hosting Server using Net.Data macros.

Lilien Lam is an e-Business Solutions Specialist in IBM Malaysia. She has 2
years of experience in the e-Commerce field. She holds a Bachelor of
Computing and Mathematical Sciences degree from the University of
Western Australia, Australia. Her areas of expertise include payment suite
products and commerce application

Daesung Chung is working at ITSO, Austin Center, and is in charge of
e-business solutions on RS/6000. He writes extensively and teaches IBM
classes worldwide on e-business and AIX. He has nine years of experience in
AIX, HACMP, and parallel databases on SP, and he has been involved in
numerous RS/6000 and SP benchmark cases. Before joining ITSO, he had
worked as a senior IT specialist at IBM Korea.

Thanks to the following people for their invaluable contributions to this
project:

Kathy Cacciatore
IBM Austin

Chris Mann
IBM Net.Commerce Hosting Server product manager

Tony Lindsay
IBM Toronto Lab

Mike Polan
IBM Toronto Lab

Quoc Tran
IBM Toronto Lab

John Owczarzak
IBM ITSO Austin Center

Temi Rose
IBM ITSO Austin Center
xii Exploring Net.Commerce Hosting Server

Steve Gardner
IBM ITSO Austin Center

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

 • Fax the evaluation form found in “ITSO Redpaper Evaluation” on page 215
to the fax number shown on the form.

 • Use the online evaluation form found at http://www.redbooks.ibm.com/

 • Send your comments in an internet note to redbook@us.ibm.com
 xiii

xiv Exploring Net.Commerce Hosting Server

Chapter 1. The NCHS Plug-In

1.1 Overview

The Plug-In is more than just a fixpak. It contains a number of enhancement
to NCHS. In this section we will give an overview of the new features with
reservations to the fact that the programming was not complete and the list of
features was still subject to change, when this text was written.

 • Catalog editor. The catalog editor has been completely rewritten. The
new version of the catalog editor is HTML based, as opposed to the old
Java based catalog editor. Hence, its not required to have the Java
merchant kit installed with your browser to use the catalog editor.
However, the page editor is still the same and requires the Java merchant
kit to be installed.

The new HTML based catalog editor runs directly off the Net.Commerce
products and categories database tables. This has a number of benefits.
As the catalog editor updates the database tables directly, the
intermediate step of saving the product information in the file catalog.cdb
in a merchants source directory is no longer necessary. Thus, the publish
function is no longer needed for products to come on-line. Every change
made in the catalog editor is reflected in the on-line store immediately.

The old publishing step would delete all of the existing products from the
database tables and then recreate them from the contents of the
catalog.cdb file. This presents a problem when linking from remote Web
pages to a specific product using URL’s, because the product reference
number in the database will change with every publish. This is not the
case with the new catalog editor, since it runs directly off the database
tables. The product reference number for a specific product will never
change, unless the product is deleted. This creates a new opportunity for
the merchant to use the catalog, shopping basket and order management
features of NCHS remotely. More details can be found in section 1.2, “New
merchant tool features” on page 2.

Another benefit of the catalog editor is the speed. Since its based on
HTML, the time it takes for the catalog editor to start is much shorter.

 • Import catalog data. It will be possible to use the Net.Commerce Mass
Import utility, since the intermediary file called catalog.cdb is no longer
used. The CSP can then use the Mass Import utility to load product and
category data into the database.
© Copyright IBM Corp. 1999 1

 • Open payments. The payment wizard and order processing tools will be
changed to support Payment Server cassettes. This will allow the CSP to
extend NCHS to support new types of payments.

The order manage tool has been rewritten to support the new payment
system, to ease customization and to allow merchants to handle multiple
orders with one operation. See the next section for more details.

 • Back-end. There has been some changes to the NCHS back-end system
itself. The main reason is to begin the synchronization of NCHS with the
next generation of Net.Commerce. Most notably are the directory changes
as a lot of the files previously located in the /usr/lpp/NetCommerce3/CHS
are now in /usr/lpp/NetCommerce3/Tools. There will probably be other
changes, but since this text is written prior to the release of the Plug-In we
don’t know yet.

1.2 New merchant tool features

There are a lot of changes in the merchant tool of Plug-In. The figure of new
merchant tool is following:
2 Exploring Net.Commerce Hosting Server

Figure 1. Merchant tool of Plug-In

In the Set Up Your Store tab, the new catalog editor and some new menus
are inserted as you can see in Figure 1. The page customization menu and
the separator customization menu are inserted independent menu items
instead of part of edit pages menu.

And the useful links menu and the navigation bar menu are newly inserted.
The useful links menu provides a summary of links to NCHS static pages.
The links include URLs of Home, Catalog, Search, Shopping Cart, Customer
Service, Registration, Logon and Logoff pages. By inserting those URLs in
the Web page, the merchant can add links from external Web pages to NCHS
static pages. In the navigation bar menu, you can change URLs of the
NCHS static pages. The followings are figures of the useful links and the
navigation bar menu items:
The NCHS Plug-In 3

Figure 2. useful links menu of new merchant tool
4 Exploring Net.Commerce Hosting Server

Figure 3. navigation bar menu of new merchant tool

The new feature introduced in catalog editor is the remote contents of a
product. You can see the menu bar about a product item as like in Figure 4 on
page 6 if you click left mouse button on the product item. As you can see
Figure 5 on page 6, the remote contents of a product displays some useful
URLs including View Product Details link, Checkout link and Add to Shopping
Cart link. The merchant can add link to display a product details page, link to
order a product and link to add a product to shopping cart by inserting those
URLs in the Web pages.
The NCHS Plug-In 5

Figure 4. New catalog editor

Figure 5. Remote content of a product

In the manage orders menu of Manage Your Store tab, multiple selection
feature is newly introduced. You can select more than one order by checking
the check box in the front of the order list. So the merchant can change status
of multiple orders and add comment to multiple orders at once. The figure of
the manage orders menu is as like below:
6 Exploring Net.Commerce Hosting Server

Figure 6. manage orders menu of new merchant tool

1.3 Installing the Plug-in on an existing NCHS system

Before you can install Net.Commerce Hosting Server V3.1.2 Plug-in (referred
to as the plug-in), you must have already installed Net.Commerce Hosting
Server V3.1.2.2. Otherwise the Plug-in will not work properly.

The installation of the plug-in consists of extracting a compressed file and
configuration modifications. If you have existing information from an
installation of Net.Commerce Hosting Server V3.1.2, you need to perform a
migration procedure after installing the plug-in.

To prepare to install the plug-in, do the following:

 • Stop the Net.Commerce, Websphere and the Web server services.

 • If you are migrating information, backup your system.
The NCHS Plug-In 7

 • Download the plugin binary NCHSPluginAIX.tar from
http://www.software.ibm.com/commerce/net.commerce/community/hosthood/do

wnloads/. The tar file contains three files.

tar -tvfNCHSPluginAIX.tar
-r-xr-xr-x 2 2 648382 Aug 30 19:07:41 1999 NCHSPlugin.pdf
-r-xr-xr-x 2 2 9573971 Aug 31 15:18:45 1999 NCHSPlugin.tar.Z
-r-xr-xr-x 2 2 3933 Aug 29 19:07:26 1999 readme_plugin.txt

Follow the below steps to install Plug-in.

1. Extract the plug-in file (NCHSPlugin.tar.Z) and uncompress it.

tar -xvfNCHSPluginAIX.tar NCHSPlugin.tar.Z
uncompress NCHSPlugin.tar

2. Untar the NCHSPlugin.tar into /usr/lpp/NetCommerce3

cd /usr/lpp/NetCommerce3
tar -xvf/tmp/NCHSPlugin.tar

This will install the updated files into the appropriate directories.

3. Open the jvm.properties file. This file is located in the following directory:

/usr/lpp/IBMWebAS/properties/server/servlet/servletservice

To the beginning of the ncf.jvm.classpath value, add the following (on one
line):

/usr/lpp/NetCommerce3/Tools/lib/nctools.jar:
/usr/lpp/NetCommerce3/Tools/lib/nchs.jar:
/usr/lpp/NetCommerce3/Tools/:
/usr/lpp/NetCommerce3/Tools/lib/xml4j.jar:

Save the file.

4. Update the Web server configuration file by following these steps:

Open /etc/httpd.conf

Then add the following statement:

Pass /NCTools/* /usr/lpp/NetCommerce3/Tools/public/*
It should be placed before
Pass /* /usr/lpp/internet/server_root/pub/*

Save the file.
8 Exploring Net.Commerce Hosting Server

1.4 Migrating on AIX

In the following procedure, we assume you are using Domino Go webserver.

To run the migration procedure do the following:

1. You can begin the migration procedure only after you have completed
steps 1 through 4 of Installing the Net.Commerce Hosting Server V3.1.2
Plug-in.

2. Logon as the DB2INSTANCE owner ID.

3. Ensure that you have the Java Development Kit, version 1.1.6 installed.

$ lslpp -l Java*
 Fileset

Path: /usr/lib/objrepos
 Java.adt.docs 1.1.6.0 COMMITTED Java Documentation
 Java.adt.includes 1.1.6.0 COMMITTED Java Application

Development Toolkit
Java.adt.src 1.1.6.1 COMMITTED Java Class Source Code

 Java.rte.Dt 1.1.6.0 COMMITTED Java Runtime Environment
 Desktop
 Java.rte.bin 1.1.6.1 COMMITTED Java Runtime Environment
 Executables
 Java.rte.classes 1.1.6.1 COMMITTED Java Runtime Environment
 Classes
 Java.rte.lib 1.1.6.1 COMMITTED Java Runtime Environment
 Libraries

4. Edit $HOME/.profile and change $CLASSPATH variable to include the
following information:

<DB2_instance_directory>/sqllib/java/db2java.zip
/usr/lpp/NetCommerce3/Tools/lib/xml4j.jar
/usr/lpp/NetCommerce3/Tools/lib/nctools.jar
/usr/lpp/NetCommerce3/Tools/lib/nchs.jar
/usr/lpp/NetCommerce3/Tools/
/usr/lpp/NetCommerce3/CHS
/usr/lpp/NetCommerce3/CHS/CHS.jar

where <DB2_instance_directory> is the directory in which DB2INSTANCE
is installed.

5. Start Net.Commerce, Websphere and the Web server.

6. Add the following text to LIBPATH (ensure that you are logged on as the
DB2INSTANCE owner ID).

/usr/lpp/NetCommerce3/bin
The NCHS Plug-In 9

Do the following.

$. $HOME/.profile

7. Do the following to look into which stores were created.

$ db2 select mpdirname,mpmenbr,mpmetaloc from mcspinfo

1 MPMENBR 3
------------ ----------- --
chssamplestore 401 /usr/lpp/NetCommerce3/CHS/source/401
chsservicesstore 402 /usr/lpp/NetCommerce3/CHS/source/402
gardenstuff 1478 /usr/lpp/NetCommerce3/CHS/source/1478

Publish existing stores by typing the following command at a command
prompt (on one line):

$ java com.ibm.commerce.tools.nchs.migration.Migration ncadmin ncadmin
/usr/lpp/NetCommerce3/Tools/config/config.xml

8. Open the following file:

/usr/lpp/IBMWebAS/properties/server/servlet/servletservice/servlets.propertie
s

Comment out the following lines:

servlet.MerchantAdmin.code=com.ibm.chs.common.PageManager
servlet.MerchantAdmin.initArgs=configfile=/usr/lpp/internet/server_root/pu
b/ncommerce.conf

Add the following to the end of the file:

Request Manager servlet
servlet.MerchantAdmin.code=com.ibm.commerce.tools.request_management.Reque
stManager
servlet.MerchantAdmin.initArgs=configfile=/usr/lpp/NetCommerce3/Tools/conf
ig/config.xml
servlet.ProductDisplay.code=com.ibm.commerce.tools.nchs.urlProxy.ProductDi
splayProxy

$ java com.ibm.commerce.tools.nchs.migration.Migration ncadmin ncadmin
/usr/lpp/NetCommerce3/Tools/config/config.xml
1999.09.03 12:45:15.610 [main] DEBUG - Parsing XML file:
/usr/lpp/NetCommerce3/Tools/config/config.xml.
Login as administrator..
Begin migration step
Succeeded in publishing merchant 401 .
Succeeded in publishing merchant 402 .
Succeeded in publishing merchant 1478 .
End migration step
10 Exploring Net.Commerce Hosting Server

servlet.ShoppingCart.code=com.ibm.commerce.tools.nchs.urlProxy.ShoppingCar
tProxy
servlet.Order.code=com.ibm.commerce.tools.nchs.urlProxy.OrderProxy
servlet.Register.code=com.ibm.commerce.tools.nchs.urlProxy.RegisterProxy
servlet.Logon.code=com.ibm.commerce.tools.nchs.urlProxy.LogonProxy
servlet.CustomerService.code=com.ibm.commerce.tools.nchs.urlProxy.Customer
ServiceProxy
servlet.ViewShoppingCart.code=com.ibm.commerce.tools.nchs.urlProxy.ViewSho
ppingCartProxy
servlet.Search.code=com.ibm.commerce.tools.nchs.urlProxy.SearchProxy
servlet.Home.code=com.ibm.commerce.tools.nchs.urlProxy.HomeProxy
servlet.Logoff.code=com.ibm.commerce.tools.nchs.urlProxy.LogoffProxy
servlet.Catalog.code=com.ibm.commerce.tools.nchs.urlProxy.CatalogProxy
Custom servlets
servlet.ExtendedPaymentFinish.code=custom.nchs.payment.ExtendedPaymentFini
sh
servlet.ExtendedChangeStatus.code=custom.nchs.order_mgmt.ExtendedChangeSta
tus
servlet.ExtendedAddComments.code=custom.nchs.order_mgmt.ExtendedAddComment
s
servlet.GetAuthorizationStatus.code=custom.nchs.order_mgmt.GetAuthorizatio
nStatus
servlet.ExtendedPaymentInitialize.code=custom.nchs.payment.ExtendedPayment
Initialize

9. Stop and restart Net.Commerce, Websphere and the Web server.

10.Ensure that you are logged on as the DB2INSTANCE owner id and publish
stores using the plug-in method by typing the following command at a
command prompt (on one line):

$ java com.ibm.commerce.tools.nchs.migration.PostMigration ncadmin
ncadmin /usr/lpp/NetCommerce3/Tools/config/config.xml

If errors occurred during the migration process, they are logged in
/usr/lpp/NetCommerce3/Tools/logs/tools.log
The NCHS Plug-In 11

11.Stop and restart Net.Commerce, Websphere and the Web server.

$ java com.ibm.commerce.tools.nchs.migration.PostMigration ncadmin \
ncadmin /usr/lpp/NetCommerce3/Tools/config/config.xml
1999.09.03 12:48:15.501 [main] DEBUG - Parsing XML file: \
/usr/lpp/NetCommerce3/Tools/config/config.xml.
Login as administrator..
Begin migration step
Begin updating PRODUCT table: change directory path of uploaded product image f
iles
End updating PRODUCT table
Succeeded in creating setting file for merchant 1478 .
Succeeded in publishing merchant 1478 .
Succeeded in creating setting file for merchant 401 .
Succeeded in publishing merchant 401 .
Succeeded in creating setting file for merchant 402 .
Succeeded in publishing merchant 402 .
End migration step
12 Exploring Net.Commerce Hosting Server

Chapter 2. Overview of NCHS customization

2.1 Overview XML in NCHS Plugin

2.1.1 Introduction to XML
XML was introduced into NCHS by the Plug-in. Most of the configuration files
in NCHS are now in XML format. If you are unfamiliar with XML, here is a
brief introduction.

XML is a method for putting structured data in a text file
For “structured data" think of such things as spreadsheets, address books,
configuration parameters, financial transactions, technical drawings, etc.
Programs that produce such data often also store it on disk, for which they
can use either a binary format or a text format. The latter allows you, if
necessary, to look at the data without the program that produced it. XML is
a set of rules, guidelines, conventions, whatever you want to call them, for
designing text formats for such data, in a way that produces files that are
easy to generate and read (by a computer), that are unambiguous, and
that avoid common pitfalls, such as lack of extensibility, lack of support for
internationalization/localization, and platform-dependency.

XML looks a bit like HTML but isn’t HTML
Like HTML, XML makes use of tags (words bracketed by '<' and '>') and
attributes (of the form name="value"), but while HTML specifies what each
tag & attribute means (and often how the text between them will look in a
browser), XML uses the tags only to delimit pieces of data, and leaves the
interpretation of the data completely to the application that reads it. In
other words, if you see "<p>" in an XML file, don't assume it is a
paragraph. Depending on the context, it may be a price, a parameter, a
person, a p... (b.t.w., who says it has to be a word with a "p"?)

XML is text, but isn’t meant to be read
XML files are text files, but not meant to be read by humans. They are text
files, because that allows experts (such as programmers) to more easily
debug applications, and in emergencies, they can use a simple text editor
to fix a broken XML file. But the rules for XML files are much stricter than
for HTML. A forgotten tag, or a an attribute without quotes makes the file
unusable, while in HTML such practice is often explicitly allowed, or at
least tolerated. It is written in the official XML specification: applications
are not allowed to try to second-guess the creator of a broken XML file; if
the file is broken, an application has to stop right there and issue an error.
© Copyright IBM Corp. 1999 13

Simple example of XML Usage
The best way to appreciate what XML documents look like is with a simple
example. Imagine your company sells products on-line. Marketing
descriptions of the products are written in HTML, but names and
addresses of customers, and also prices and discounts are formatted with
XML. Here is the information describing a customer:

<customer-details id="AcPharm39156">
 <name>Acme Pharmaceuticals Co.</name>
 <address country="US">
 <street>7301 Smokey Boulevard</street>
 <city>Smallville</city>
 <state>Indiana</state>
 <postal>94571</postal>
 </address>
 </customer-details>

The XML syntax uses matching start and end tags, such as <name> and
</name>, to mark up information. A piece of information marked by the
presence of tags is called an element; elements may be further enriched
by attaching name-value pairs (for example, country="US" in the example
above) called attributes. Its simple syntax is easy to process by machine,
and has the attraction of remaining understandable to humans. XML is
based on SGML, and is familiar in look and feel to those accustomed to
HTML.

Setting XML into C++ context
We can view an XML element as a class and attributes as properties of a
class. This allows us to relate the information in the previous example as
follows :

customer-details.id

customer-details->name

customer-details->address.country

customer-details->address->street

customer-details->address->state

For further reference, check the following sites.

http://www.xmlbooks.com/

http://www.ibm.com/developerWorks
14 Exploring Net.Commerce Hosting Server

2.1.2 XML configuration files in NCHS
The following diagram shows the relationship among NCHS configuration
files.

Figure 7. Relationship among xml files

2.2 Impact of customizations

We have examined the impact of modifying some of NCHS configurations.
The directory table describes sub directories of standard installation directory
(/usr/lpp/NetCommerce3/).

Changes to files that may affect store(s).

directory impact(s)

/CHS/source/<merchant_id>/ only this store, changes may be erased when publishing changes
from MerchantTool

/macro/common/ by default all stores, depends on changes to local macro’s

/macro/<LANG>/<merchant_id>/ local macro’s, default just a link to the common macro.

mtoolNLS.properties

model.xml

merchantTool.xml

tasks.xml

mtoolTasks.xml

setUpYourStoreFolder=Set Up Your Store
giftMessage=gift message
openCloseStore=open/close store

<modelConfig>
<model nameSpace="nchs">
<resourceBundle name="mtoolNLS"
bundle="com.ibm.commerce.tools.nchs.properties.mtoolNLS"/>

<task name="CTnchs/mtool/StoreState"
template="nchs/mtool/StoreState.tem"
class="com.ibm.commerce.tools.nchs.mtool.StoreState"
dbSessionRequired="true"
accessControlled="true"
userGroups=siteAdmin storeAdmin*/>

<noteBook resourceBundle="nchs.mtoolNLS"..>

<Folder name="setUpYourStoreFolder">
<link name="giftMessage"
url="/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/gfmsg.d2w/report?merfnbr=$env.merchant_id$"..>

<nfile name="nchs/mtoolTasks.xml"/>
<nfile name="nchs/orderMgmtTasks.xml"/>
<nfile name="nchs/paymentTasks.xml"/>
Overview of NCHS customization 15

/Tools/ All merchants are affected by any change to any file. These changes
will affect the MerchantTool/Catalog/Payment and all other parts of
NCHS Plugin.

directory impact(s)
16 Exploring Net.Commerce Hosting Server

Chapter 3. NCHS advanced customization

There are many attractive things that can be customized, but the general
documentation on these items is very limited. This chapter will explain some
advanced customization features of NCHS and provide examples on how to
do the customization. Some of the issues discussed in this chapter require
extensive knowledge about the workings of Net.Commerce. The various
sections discuss customization of NCHS which requires understanding of
Net.Data, SQL, C++, MPG (MultiPurpose Code Generation Language) and
Net.Commerce Tasks, Commands and Overridable Functions. The MPG
language is specific to NCHS and is described in Appendix F, “A
MultiPurpose Code Generation language” on page 159.

3.1 Overview

Customization of NCHS is an advanced topic as the documentation is very
limited. You have to be familiar with Net.Commerce and you have to spend
time with NCHS to understand how it works. In this chapter we will provide
you with some examples of how NCHS can be customized. This should help
you to understand the customization issues with NCHS, and let you do your
own customization.

The basic idea of NCHS is to let a CSP provide and sell a commerce service
to as many merchants as possible. To keep the cost down for both the CSP
and the merchants, some common elements are used for all the stores in a
hosted commerce environment. Hence, the merchant tool and the store
model of NCHS. This is a key issues to remember when customizing NCHS.

The desire to do customization for one particular merchant should cause the
big red lights to flash. Is it worth it to do customization for one particular
merchant or should that merchant be moved to an independent
Net.Commerce instance? If you do customization for one merchant do you
then diminish the benefits of large-scale operations that NCHS provides? If
the merchant decides not to be a customer of yours anymore, can you then
remove the customization without damaging NCHS and the rest of the
merchants?

Even if the above is true there may still be reasons to customize NCHS for
one particular merchant or for a group of merchants. This is not an easy task
with the current version of NCHS (NCHS 3.1.2). It will be easier in future
versions of NCHS, but right now you will have to do most of the thinking and
development your self. However, it is absolutely possible to do merchant
© Copyright IBM Corp. 1999 17

specific customization. We will not provide any examples of how to do it, but
you should be able to figure it out from the examples we do provide.

The following text takes a starting point in a new store being created and then
explains what happens during the creation and publishing of the store. It’s a
key issue to understand the publish process before doing any customization
as it creates and makes changes to files and database contents.

3.2 The merchant store model

This section will explain what happens when a merchant creates a new store
and what happens when the merchant publishes the store.

3.2.1 Creating a new store
When a merchant decides to create a new store a number of things happens
within NCHS.

First a new merchant record is created in the database and a merchant
reference number (MERFNBR in the MERCHANT table) is assigned to the
new merchant.

The unique merchant reference number is used to create a directory to store
the HTML pages and catalog data for that particular merchant. The directory
is created as /NetCommerce3/CHS/source/id where the id is the merchant
reference number.

Here is a listing of /NetCommerce3/CHS/source

[.] [..] [1051] [1052] [1951] [2676] [2677] [2678]
[2876] [3076] [3376] [3626] [null] [sample]

The new directory will be preloaded with a layout file called site.sdb which
contains HTML pages and an XML file called settings.xml which contains
some default settings for the site.

Here is a listing of /NetCommerce3/CHS/source/1052

[.] [..] catalog.cdb [html] settings.xml
site.sdb

The layout file describes all the content that the merchant creates with the
edit pages functions. The data in the layout file is not on-line yet and
shoppers will therefore not be able to see the contents in the layout file until
the store is published. To put the contents of the layout file on-line, the
18 Exploring Net.Commerce Hosting Server

merchant must publish his store using the merchant tool. How the publish
function works will be explained in the next section.

When a store is created it is preloaded with a layout file as described above.
The preloaded layout file is created from a default layout file. Basically, it is a
copy and rename of file located in the directory CHS/layout/en_US.

 • CHS/layout/en_US/layout.sdb → CHS/source/id/site.sdb

3.2.2 Changing the default store layout
As the logic above shows, all stores are created from the same default layout
file. It also means that we can create a new default layout file and make all
new stores use them. The procedure for doing that is:

 • Create a new store.

 • Use the edit pages functions of the merchant tool to edit the pages of
your store. Save your work, but do NOT publish your store as NCHS will
write store specific data to the site.sdb file, and thereby making it useless
as a generic file.

 • Find the merchant reference number for the new store. There are a
number of ways you can do this. One way is to look in the MERCHANT
table in the database, as shown below. You have to be logged in as the
database instance owner (db2inst1 in our case).

$ id
uid=201(db2inst1) gid=201(db2iadm1) groups=202(smadmin)

$ db2 select merfnbr,mestname from merchant

MERFNBR MESTNAME

----------- --

 526 daisy’s shop

 527 FlowerShop

 1476 23June

 1477 test

 1478 Garden Stuff

 1851 24June

 1852 donald’s shop
NCHS advanced customization 19

Pick the merchant reference number next to your store name. Since the
store created for the example in this book is called Garden Stuff, the
number is 1478.

 • You should probably backup the original layout file in CHS/layout/en_US
before continuing.

 • Replace the default layout file by copying the site.sdb file from your store
over the default layout file. In this step you have to use the merchant
reference number we found earlier as the id:

 • CHS/source/id/site.sdb → CHS/layout/en_US/layout.sdb

 • All new shops will now be created with the new default layout file.

3.2.3 The merchants HTML directory
Another directory will also be created inside the newly created merchant
reference number directory CHS/source/id. This directory is called html and
its path is then CHS/source/id/html. When first created the html directory
contains a few .html files.

The files in the html directory will be copied to the merchants on-line directory
when the store is published. The merchant can actually access all the files in
the html directory, by using the merchant tool function manage files. It is also
this directory the merchant uploads his own html files with the upload files
function.

The preloaded html files just contain redirections, so if a shopper for example
tries to access http://hostname/storename/catalog then the catalog.html file
will be read and the shopper’s browser will be redirected to the catalog pages
of the store. The redirection for the catalog consists of the Net.Commerce
command CategoryDisplay with the proper parameters. This is how all the
above nine preloaded html files work.

The merchant or the CSP can modify or delete the preloaded files, as they
will not be recreated by NCHS. The merchant could also upload other files
including html files created with non-NCHS authoring tools (for example
TopPage, NetObjects Fusion or Frontpage). However, NCHS will create or
recreate some html files based on the contents of site.sdb. The default

[.] [..] About_Us125.html
catalog.html customer_service.html index.html
logon.html register.html search.html
shop_cart.html zzz.html
20 Exploring Net.Commerce Hosting Server

site.sdb contains index.html and an About_Us page, but could contain more
pages. Hence, if a merchant uploads a file, for example his own index.html,
and publishes his store again, NCHS will overwrite the index.html that was
just uploaded. This can be avoided by deleting all the pages in site.sdb using
the merchant tool. The procedure on how to prevent the customized html files
from being overwritten while the store is published is discussed later.

A number of things are done in the database when a merchant creates a new
store, such as adding the merchants user id and password to the
SHOPPERS table, creating a record for the store in MCSPINFO and some
other things. Going into details about what is put into the database is beyond
the scope of this book.

3.2.4 Publishing a store
The publish function in the merchant tool is used by a merchant to publish a
store.
NCHS advanced customization 21

Figure 8. The publish window

Most of the fields on the Publish store page, as shown on Figure 8, are
mandatory. This is because they are used by central functions of NCHS. In
this section we will focus on the parameter used by the publish function, and
that is the directory name.

The directory name, gardenstuff in our example, is used during the publish
process and is also stored in the database (the table is MCSPINFO). The first
thing the directory name is used for is to create the directory that will hold the
various HTML files for the shop:

 • For AIX: /usr/lpp/internet/server_root/pub/directoryname
or

 • For NT: /IBM/www/html/directoryname.

gardenstuff

service@gardenstuff

Garden Stuff Entertainment
22 Exploring Net.Commerce Hosting Server

Since the directory name is created in the root of the html directory it will also
become the URL for the shop, as: http://hostname/directoryname

NCHS checks that the directory name is not already in use by another
merchant and that the directory is not contained in the file
ReservedDirectoryNames.properties before the merchant can use it. The
ReservedDirectoryNames file is located in the CHS/properties directory and
contains a list of reserved directory names that merchants can not select. A
text editor can be used to add new directories to the
ReservedDirectoryNames.properties file if desired.

If a merchant decides to change directory name, then NCHS will clean up the
directory with the old name (deleting all the files in the directory including the
directory itself). The new directory name will then be used in the publish
process.

Other store specific directories are created using the merchant reference
number. These directories are as follows:

 • macro/en_US/merchantRefNum

 • macro/en_US/category/merchantRefNum

 • macro/en_US/product/merchantRefNum

These directories contain macros specific to each of the stores. Because they
use the merchant reference number instead of the home directory name, they
will not change when the home directory name changes.

The Net.Data macro files
By default all the stores in NCHS use the same shopping flow and checkout
flow. The macro files that all the stores share are in the directory
macro/en_US/CSPstoremodel. However, the merchants get three of their
own macro directories, as shown above, because some of the content in a
store is customized towards a merchant. This is for example the background
color or graphics, the store name or the horizontal separator between
products.

$ db2 select mpdirname,mpmenbr,mpmetaloc from mcspinfo\
where mpdirname=’gardenstuff’

1 MPMENBR 3
------------ ----------- --
gardenstuff 1478 /usr/lpp/NetCommerce3/CHS/source/1478

MCSPINFO table
NCHS advanced customization 23

This is handled by creating a set of small and simple macro files for each
merchant. These macro files simply includes a merchant specific data file and
the macro file from the CSPstoremodel directory. The file shown below is a
merchants logon.d2w macro file.

The merchant has selected the directory name gardenstuff and the
merchants logon.d2w file is in macro/en_US/gardenstuff. As the file shows, it
includes a file called gardenstuff.inc. This file contains all the merchant
specific settings, like background color, merchant name and so on. The
second file included is the logon.d2w from the NCHS store model directory,
and it contains all the SQL and HTML to create a page for the shopper.

During the first publish about 24 marco files will be generated in the
merchants macro directory. These macro files will only be generated the first
time the merchant uses a directory name. If the merchant change directory
name, then all the files will be regenerated for that new directory.

Since the macro files are only generated once, the CSP can change these
files in any way. The CSP could for example let some merchants use another
store model by simply changing the included macro file to something like this:

As long as the merchant does not change their home directory name, then
the above will work.

Since the include file (gardenstuff.inc in the example above) is in the directory
named by the merchant reference number, the file is not generated every
time a merchant executes the publish function, so any changes to the .inc file
will not be lost when the publish function is performed.

The last two macro directories, as described in, “The Net.Data macro files” on
page 23, are

logon.d2w:

%include "1478/gardenstuff.inc"
%include "CSPstoremodel/logon.d2w"

logon.d2w:

%include "1478/gardenstuff.inc"
%include "MyNewStoreModel/logon.d2w"
24 Exploring Net.Commerce Hosting Server

macro/en_US/category/id,
macro/en_US/product/id

and they each contain one macro file that looks like the following:

%include "1052\include.inc"
%include "CSPstoremodel\csp_cat.d2w

3.3 Changing shopping flow

3.3.1 Default Shopping and checkout flow

As described in 3.2.4, “Publishing a store” on page 21, all the stores in NCHS
follow the same shopping flow and checkout flow by default. The shopping
and checkout flows are the web pages a shopper moves through when
making a purchase in a store. When the shopper selects categories, looks at
products and adds them to the shopping cart it is called the shopping flow.
When the shopper begins to finalize an order by entering a billing address, a
shipping address and the payment information then it is called the checkout
flow. Figure 9 on page 26 shows the default shopping and checkout flows of
the CSP store model.

When a merchant publishes his/her store, html files are generated from the
contents in site.sdb and are written to
/usr/lpp/NetCommerce3/CHS/source/id/html, overwriting all html files with
the same names. Hence, changes made to the html files are not kept.
However, change made to the macro files in /en_US/id,
macro/en_US/category/id, and macro/en_US/product/id are preserved.

What is kept after a publish
NCHS advanced customization 25

Figure 9. Shopping flow and checkout flow of the CSP store model

A shopper can browse catalog index page by selecting Catalog menu in the
navigation bar of the store home page.The catalog index page shows product
category list of the store. When the shopper selects the category that he/she
wants to see, the category items page shows product list of the selected
category as shown below:

Store Home Page

Catalog Index

Category Items

Product Page

Shopping Cart

Order Billing Address

Order Payment Information

Order Confirmation

Order Shipping Address
26 Exploring Net.Commerce Hosting Server

Figure 10. Category items page of the CSP store model

If the shopper clicks the Order button below the product description, they can
see the product page as like Figure 11 on page 28. A comment can be
entered in the product page when a product is ordered so that attributes such
as size or color can be specified. You can see the text area for the comment
above the Order button in the product page.
NCHS advanced customization 27

Figure 11. Product page of the CSP store model

In the product page, the shopper adds the item that he/she want to purchase
in the shopping cart by clicking the Order button. The shopping cart page
allows quantities to be updated or item to be deleted. The shopping cart page
follows:
28 Exploring Net.Commerce Hosting Server

Figure 12. Shopping cart page of the CSP store model

When the shopper decides which items will be purchased and clicks the
Order button in the shopping cart page, they move into the checkout flow.
The checkout flow consists of three or four pages as shown in Figure 9 on
page 26.

On the order billing address page, the shopper enters the address which the
bill is delivered to. And then if the shipping address is the same as the billing
address, the shopper goes to the order payment information page or if not,
goes to the order shipping address page. For the registered shopper, the
order billing address page shows the page filled with the registered billing
address.
NCHS advanced customization 29

Finally payment information must be entered in the order payment
information page. NCHS supports off-line payment in addition to on-line
payment using the SSL protected form. So the merchant can provide one or
two payment methods according to their payment management policy. In the
case of on-line payment, the shopper must select the brand of card with
which to pay and enter the card number and the expiry date of the card in the
order payment information page. In the case of off-line payment, the
merchant displays the contact points such as e-mail address or toll free
phone number so that the shopper can contact the merchant for providing
payment information.

After all the processes are completed, the order confirmation page shows the
confirmation message for the order including billing address, ordered items
and their quantities, total charge and delivery information.

3.3.2 Customizing the default shopping flow
We explained the default shopping and checkout flow in the previous section.
Net.Data macro files for the default shopping and checkout flow are in the
following directories:

 • macro/en_US/CSPstoremodel

 • macro/en_US/category/CSPstoremodel

 • macro/en_US/product/CSPstoremodel

Net.Data macro files for each store are in the following directories:

 • macro/en_US/id

 • macro/en_US/category/id

 • macro/en_US/product/id

The Net.Data macro files for each store just includes the CSPstoremodel file
like below:

.../NetCommerce3/macro/en_US/category/1478/csp_cat.d2w

%include "1478/gardenstuff.inc"
%include "category/CSPstoremodel/csp_cat.d2w"
#

A CSP can change the default shopping and checkout flow for the site by
modifying Net.Data macro files under the CSPstoremodel directories. And the
CSP can also change the flow of specific store by modifying Net.Data macro
files in the specific store directories. In that case the modification is applied
only that specific store.
30 Exploring Net.Commerce Hosting Server

In this section, we will show how to change the default store flow by modifying
Net.Data macro file. We will replace the Order button in the category items
page with the Quick Order button and let the shopper go from category items
page to shopping cart page directly.

The only thing that the shopper might do for ordering in the product page is
inserting the attributes of the item which he/she will purchase. And the
product page provides no more information about the item than the category
items page does. So we can replace the Order button without losing any
information with the Quick Order button. After customization, the shopper
can see the product page by clicking the image of the item. You can refer to
screen shots of the category items page and the product page in Figure 10 on
page 27 and Figure 11 on page 28.

The new shopping flow is as like this:

Figure 13. Shopping flow after adding Quick Order button

The figure of the category items page after customizing will be as like below:
NCHS advanced customization 31

Figure 14. Category items page after replacing Order button with Quick Order button

If the shopper want to purchase the item, he/she puts the item in the
shopping cart by entering attributes of the item in the comment area and
clicking the Quick Order button. By replacing the Order button with the
Quick Order button, the CSP can provide more convenient shopping
process.

You can customize the category items page of the default store flow by
modifying macro/en_US/category/CSPstoremodel/csp_cat.d2w macro file.

The things that we have to do for customizing are as follows:

 • Delete the Order button that submits a data set to ProductDisplay
command. The NCHS command ProductDisplay displays a product page.
32 Exploring Net.Commerce Hosting Server

 • Insert the Quick Order button that submits a data set to OrderItemUpdate
command. The NCHS command OrderItemUpdate updates or creates a
shipping record.

First of all we have to delete the Order button from the category items page.
Open the text translation file named as
macro/en_US/CSPstoremodel/translation_text.inc. You can see that the
variable BUT_ORDER represents the text "Order" in the macro file.

%define {

 BUT_CATINDEX = "Catalog Index"
 BUT_CHANGE = "Change"
 BUT_CONTINUEORDER = "Continue"
 BUT_FINDLOGONID = "Find"
 BUT_HOME = "Home"
 BUT_LOGON = "Logon"
 BUT_ORDERITEMS = "Order"
 BUT_ORDER = "Order"
 BUT_REG_UPDATE = "Update Registration"

Open the file macro/en_US/category/CSPstoremodel/csp_cat.d2w using a
text editor and find the command including the variable BUT_ORDER. You
can see three places in the function DISPLAY_PRODUCT_LIST. The Order
button was used to submit a form data set to ProductDisplay command. The
command ProductDisplay displays a product page, so we don’t need to
execute that command in the customized category items page.

We can comment out the form text including the ProductDisplay command
and the Order submit button. Following is the example, and you can apply
the same method in the other two form text in the function
DISPLAY_PRODUCT_LIST.

%IF (pre_rrfnbr != "null" && V_prrfnbr != prr_no)
<!-- <FORM ACTION="/cgi-bin/ncommerce3/ProductDisplay" METHOD="post">
<INPUT TYPE=hidden NAME="prmenbr" VALUE="$(MerchantRefNum)">
<INPUT TYPE=hidden NAME="prrfnbr" VALUE="$(pre_rrfnbr)">
<INPUT TYPE=hidden NAME=product_rn VALUE=$(pre_rrfnbr)>
<INPUT TYPE=SUBMIT VALUE="$(BUT_ORDER)">
</FORM> -->

Next we have to insert the form text executing the command
OrderItemUpdate in the three place that we commented out the form text
executing the command ProductDisplay. In the form text the Quick Order
NCHS advanced customization 33

button submits a form data set to OrderItemUpdate command. The example
of the form text to be inserted is as like below:

<FORM NAME="process" ACTION="/cgi-bin/ncommerce3/OrderItemUpdate"
Method=get>
<INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>
<INPUT TYPE=hidden NAME=product_rn VALUE=$(pre_rrfnbr)>
<INPUT TYPE=hidden NAME=quantity VALUE=1>
<INPUT TYPE=hidden NAME=url
VALUE=/cgi-bin/ncommerce3/OrderItemList?merchant_rn=$(MerchantRefNum)>
<TEXTAREA NAME="comment" ROWS="4" COLS="60"></TEXTAREA>

<INPUT TYPE=SUBMIT VALUE="Quick Order">
</FORM>

The command OrderItemUpdate updates or creates a shipping record. The
data set for the command OrderItemUpdate includes merchant reference
number, product reference number, quantity of the item (in this case, using
default quantity), url that is called when the command successfully completes
(in this case, OrderItmeList command) and a comment to be included with the
order.

You can see the overall code for customized
macro/en_US/category/CSPstoremodel/csp_cat.d2w file in Appendix C,
“Net.Data macro for the category items page” on page 65.

3.4 Adding a new function to NCHS-"Gift message" exmaple

In this section we will go into detail about how a new function could be added
to NCHS. We will do this by creating an example and then make the
necessary changes to the merchant tool, the checkout flow and the database.

Some shops sell goods that are appropriate as gifts. Such shops may want to
offer an additional service by allowing shoppers to enter personalized gift
messages when they order. However, not all shops have a business model
where gift messages are appropriate. Hence, allowing shoppers to enter gift
messages should therefore be offered as an option to merchants.

Adding a feature like a gift message to NCHS, requires a number of
modification. This becomes clear when we view the list of things that must be
implemented in order for this feature to become active:

 • The merchant must be able to enable and disable the gift message
feature.
34 Exploring Net.Commerce Hosting Server

 • Instructions on how to enter a gift message must be presented to the
shopper. The instructions may differ by each merchant and each merchant
should therefore be able to enter his own instructions.

 • If a merchant has enabled the gift message feature, then the shopper
should be presented with this option during the checkout process.

 • The gift message must be stored with the order and the merchant should
be able to see the message in the merchant tool.

An implicit change not mentioned above is the need for a place in the
database to store information about which of the merchants has enabled the
gift message feature and what are their related instructions. A place to store
the actual gift messages is also required.

The following sections will explain how the gift message feature is
implemented in the various parts of NCHS. The first item we modify is the
merchant tool, where we will let the merchant enable/disable our new feature.

3.4.1 MultiPurpose Code Generation language (MPG)

Many of the windows in the merchant tool are generated by the MultiPurpose
Generator (MPG) within NCHS. The MPG is a utility used to generate output
based on two components: the model (a Java class) and a template (a text
file). In NCHS the template describes the output generated for the browser
which is HTML. All the MPG templates are text files and can be modified with
a standard text editor. The Java classes that makes up the model part of the
page generation are compiled codes and can not be modified. This fact
creates some limitations to what can be customized in the merchant tool.

The MPG models for all the MPG pages exist within the NCHS Java
framework and since it is not disclosed how these models are implemented,
we can not create new ones. However, we can still modify the existing pages,
as MPG allows some simple programming in the template part of a page. The
graphical design can also be changed. We will take advantage of these
options as we implement the gift message feature.

The use of MPG is not supported by IBM. Any modification to files in
relation to MPG is at your own risk. Changes made to files in relation to
MPG may not work in previous, and/or new versions of Net.Commerce
Hosting Server. IBM does not guarantee any migration path for changes
made to files in relation to MPG..

Disclaimer
NCHS advanced customization 35

The template files are interpreted by the MultiPurpose Generator whenever
they are read and parsing the templates takes a while. To avoid this
overhead, the parsed version of the templates are cached and then reused
for subsequent reads. This scheme only works if the templates are not
modified. Hence, modifying the templates on a regular basis should be
avoided.

Appendix A, “A MultiPurpose Code Generation language” on page 331 is a
document that gives an introduction to how MPG works. This document is not
exhaustive and is only included to help the reader getting a better understand
of MPG. We are not doing much MPG programming in this book and just a
basic understanding of MPG is required to read and understand the examples
we provide.

Please note that when we refer to MPG files in the rest of this book, we mean
the template files.

3.4.2 Add/Remove a menu item in the merchant tool
To allow merchants to see the new gift message feature and then use it, we
have to modify the merchant tool by adding a new menu item. We will call this
menu item gift message and we would like to insert it between open/close
store and upload files on the Set Up Your Store page (see Figure 8 on page
22 to refresh you memory of the menu layout).

The menu to the left is generated from an XML file called merchantTool.xml
located in /Tools/xml/nchs/mtool/. This file covers all the left hand menus on
all pages in the merchant tool. Fortunately it is not that difficult to find the right
spot for out new menu item.

We will not print the entire merchantTool.xml file due to its size. Instead use a
text editor to open the file and search for OpenCloseStore. You should then
be located in the file as shown below:

<link name = "openCloseStore"
url = "/servlet/MerchantAdmin?DISPLAY=CTnchs.mtool.StoreState"
users = "storeAdmin" />
<link name = "uploadFiles"
url = "/servlet/MerchantAdmin?DISPLAY=CTnchs.mtool.SplashScreen&
window = FileUpload"
users = "storeAdmin,catalogAdmin" />

If you scroll up and down in the file you will notice that every menu item has
its own entry as a link tag.
36 Exploring Net.Commerce Hosting Server

All we have to do is to create a link tag with parameters for the new gift
message menu item and place it in merchantTool.xml file between
openCloseStore and uploadFiles. The code we will insert looks like this:

<link name = "giftMessage"
url = "/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/gftmsg.d2w/
report?merfnbr=" + $env.merchant_id$"
users = "storeAdmin" />

Insert this code between the openCloseStore and advancedFeatures links
and it will look like this:

<link name = "openCloseStore"
url = "/servlet/MerchantAdmin?DISPLAY=CTnchs.mtool.StoreState"
users = "storeAdmin" />
<link name = "giftMessage"
url = "cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/gftmsg.d2w/
report?merfnbr=" + $env.merchant_id$"
<link name = "uploadFiles"
url = "/servlet/MerchantAdmin?DISPLAY=CTnchs.mtool.SplashScreen&
window=FileUpload"
users = "storeAdmin,catalogAdmin" />

The first line defines variable that contains the name used on the link. The
second line defines the action of the link. And the third line defines the users
allowed to see this link.

Save the merchantTool.xml file.

Since the link name reference in the merchantTool.xml file refers to a variable
that holds the name of the link, we must provide the name of the link to that
variable. The file /NetCommerce3/Tools/lib/nchs.jar contains many files and
among them is mtoolNLS.properties. Extract mtoolsNLS.properties from
nchs.jar and open the file for editing. Enter the following line in the ’#
Merchant tool set up your store links’ section:

Merchant tool set up your store links
storeActivity=store activity
getMerchantTool=get merchant tool
getMerchantGuide=get merchant guide
publishStore=publish store
paymentMethods=payment methods
editPages=edit pages
editCatalog=edit catalog
openCloseStore=open/close store
giftMessage=gift message
NCHS advanced customization 37

Save the file and replace into the nchs.jar file, making sure the path is saved
as well.(You may have to stop the Domino Go Webserver to replace the file,
then restart it).

View the new menu in your browser. It should look something like Figure 15.
The new menu item is right between open/close store and upload files.

Notice on Figure 15 that we have gotten a vertical scroll bar next to the left
hand menu. This is because we expanded the menu outside the window and
thus got a scroll bar. To get rid of the scroll bar we could either ask the user to
expand the window or change the windows default opening size.

Figure 15. Merchant tool with new menu item

3.4.3 Change the size of the merchant tool window
The merchant tool is by default opened when a user tries to create a store or
manage a store. The two files that control the size of the merchant tool
window are create_store.html and manage_store.html. These files are
located in the directory html/en_US/cspsite.
38 Exploring Net.Commerce Hosting Server

ls /usr/lpp/NetCommerce3/html/en_US/cspsite/ *_store.html
buy_store.html create_store.html manage_store.html view_store.html
#

Edit the create_store.html file and look for a line that begins with

var target = window.open("", "MerchantTool", "resizable=yes, ...

You could also just search for height as that would bring you to the same line
and place your cursor right where you want it.

The entire line looks like this:

var target = window.open("", "MerchantTool", "resizable=yes,scrollbars=
yes,status=yes,width=750,height=500,screenX=0,screenY=0,left=0,top=0");

We want to change the height of the merchant tool window from 500 pixels to
610 pixels, so the height=500 parameter should be changed to height=610.

var target = window.open("", "MerchantTool", "resizable=yes,scrollbars=
yes,status=yes,width=750,height=610,screenX=0,screenY=0,left=0,top=0");

Save the create_store.html file with the new changes. The next step is to
modify the manage_store.html file. Its the same process.

In manage_store.html search for height or look for this line:

window.open("http://" + window.location.hostname +
"/servlet/MerchantAdmin?GOTO=Banner&body=LogonPage", "MerchantTool",
"resizable=yes,scrollbars=yes,status=yes,width=750,height=500,screenX=0,
screenY=0,left=0,top=0");

Change the height=500 parameter to height=610 as

window.open("http://" + window.location.hostname +
"/servlet/MerchantAdmin?GOTO=Banner&body=LogonPage", "MerchantTool",
"resizable=yes,scrollbars=yes,status=yes,width=750,height=610,screenX=0,
screenY=0,left=0,top=0");

Save the manage_store.html. Select manage store from the from the cspsite
Web page, log in, select the Set Up Your Store page. The vertical scroll bar
should have disappeared as shown on Figure 16 on page 40.
NCHS advanced customization 39

Figure 16. The merchant tool with no vertical scroll bar

Notice that there still is a horizontal scroll bar, but this is only because we
have shrunk the image horizontally to make it look better in this book.

3.4.4 A new Net.Data macro for the merchant tool
As we add a new menu item to the menu of the merchant tool we also have to
add a page for the right hand window of the merchant tool. The right hand
window is where NCHS presents and receives information to and from the
merchant.

In section 3.4.2, “Add/Remove a menu item in the merchant tool” on page 36
we created a new menu item called "gift message" and it will launch a
Net.Data macro called gftmsg.d2w when it is selected.

The information we want to collect with this macro is whether or not the
merchant wants to enable the gift message feature and the gift message
instructions the merchant presents to the shopper. To get this information we
need at checkbox field for the enable/disable function and a text field for the
40 Exploring Net.Commerce Hosting Server

instructions. Our form should also have a submit button so the merchant can
submit the information to our system.

We need something to receive the data from the submit button. The usual
way with Net.Commerce is to have a command receive and process the data
before launching a new Net.Data macro back to the browser. Since our data
is very simple and we only use our own table, we will not create a new
command but just use a Net.Data macro to receive and store the data. Please
note that the recommended procedure is to use a Net.Commerce command
to process the data.

Before we create the Net.Data macro we need a place to store the data we
receive. When a merchant enables the gift message feature then the
checkout process for that merchant’s store should automatically change to
support getting the gift message from the shopper. To do that we need an
enable/disable flag and a place to store the gift message instructions. The
database is an obvious choice.

There are a couple of ways to store new data in the Net.Commerce database:

1. Add new fields to the MERCHANT or MCSPINFO table as there are
already one row for each merchant (and our data must be related to a
specific merchant). This approach has a huge drawback; if or when we
decide to upgrade our installation to the next version of NCHS, we are
very likely to encounter a number of difficulties upgrading the database
scheme because we changed it. We can not expect the next version of
NCHS to handle the changes we make to the NCHS tables.

2. Use some of the "reserved for merchant customization" fields that are
available in the NCHS tables. There are actually two fields in the
MERCHANT table we could for our purpose. We will use this approach in
a later step, but for now we will use the third option.

3. Create a new table with the fields we need. This will give us the most
freedom but also some challenges since we have to maintain the
relationships to the rest of the database and we also have to handle
cleaning of unused data. The cleaning can be done automatically by
expanding the referential integrity relationships already implemented in
the database.

Option 1 should be avoided in any case, so we can choose between option 2
and 3 . We will choose option 3 to show how to implement your own table, but
in section 3.4.5, “Modify the checkout flow” on page 44, we will implement
option 2 and use the "reserved for merchant customization" fields.
NCHS advanced customization 41

Apart from an enable/disable flag and some space for instructions we also
need to relate our data to a certain merchant. The below table shows the
three fields contained in our new table.

Table 1. MADDFEATURE: Merchant Additional Feature Table

The following is a description of how to create the MADDFEATURE table in
the database.

1. Log in as the database instance owner (db2inst1 in our example).

2. We will create a small script file to create the table. Actually the script only
contains one command, but its easier to edit a script than to type the entire
command again if we want to make changes.

Create a file called giftmessage.db2.sql with a text editor.

3. Add the following text to the script file:

create table maddfeature
(
mamenbr integer not null,
magftmsg smallint,
magfttxt varchar(256),
constraint p_maddfeature primary key (mamenbr),
constraint fme_maddfeature foreign key (mamenbr)

references merchant (merfnbr)
on delete cascade

);

4. Save the script file and exit the text editor.

5. Connect to the database by issuing the following command:

db2 connect to mser

Our database is called mser which is the Net.Commerce default name.

6. Run the script to create the table:

db2 -tvf giftmessage.db2.sql

Name Type Description

MAMENBR INTEGER
NOT NULL

Merchant reference number. This is a foreign
key that reference column MERFNBR in table
MERCHANT.

MAGFTMSG SMALLINT 0 - Gift message feature disabled
1 - Gift message feature enabled

MAGFTTXT VARCHAR(256) The merchants gift message instructions to
shoppers.
42 Exploring Net.Commerce Hosting Server

When you executes the script it should look something like this:

db2 -tvf gift_message.db2.sql
create table maddfeature (mamenbr integer not null, magftmsg smallint,
magfttxt varchar(256), constraint p_maddfeature primary key (mamenbr),
constraint fme_maddfeature foreign key (mamenbr) references merchant
(merfnbr) on delete cascade)
DB20000I The SQL command completed successfully.

7. If you for some reason would like to delete the table (and all its contents)
then use this command:

db2 drop table maddfeature

The database table is now created and we can begin to develop the two
Net.Data macros. Figure 17 indicates how the flow of the Net.Data macros
should be.

Figure 17. Merchant tool gift message flow

The gftmsg.d2w macro reads the current status (whether the gift message
feature is enabled or disabled) and the instruction from the database. This is
presented in the form to the merchant. The merchant can alter the settings
and submit the changes to gftmsg2.d2w. The gftmsg2.d2w macro receives
the data and updates the database. As a confirmation the gftmsg2.d2w macro
presents the updated data to the merchant.

To be consistent with the merchant tool we place our new Net.Data macros in
the directory macro/en_US/ncadmin/storemgr. We used the macro

gftmsg2.d2w

Submit

Update state
and message

Get state
and message

Database

gftmsg.d2w
NCHS advanced customization 43

cspGenRptStore.d2w as a starting point for developing our own macros,
instead of beginning from scratch. The code for the two macros can be found
in Appendix A., “Net.Data macros for the merchant tool” on page 45.

The full URL to launch the gftmsg.d2w macro is shown below. Log in as a
merchant first or you will get an access denied message.

http://www.hostname.com/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/gftm
sg.d2w/ report?merfnbr=" + env.merchant_id

The URL above is used in the merchant tool as described in section 3.4.2,
“Add/Remove a menu item in the merchant tool” on page 36. Figure 18 shows
what the gift message window looks like in the merchant tool.

Figure 18. The new gift message window

3.4.5 Modify the checkout flow
In the previous section the merchant tool and database was modified to
handle the gift message feature. If the merchant enables the gift message
feature then shopper should get a field where they can enter a gift message.
44 Exploring Net.Commerce Hosting Server

The gift message instructions from the merchant should also be displayed to
the shopper.

The most natural place to display and collect the gift message would be
during the checkout process. We decided to expand the "order payment
information" page with a gift message section. The macro used to display this
page is called ord_pay.d2w.

.../NetCommerce3/macro/en_US/CSPstoremodel/addradd.d2w:
logon_pwdchange.d2w ord_status.d2w
address.inc main.d2w ord_update.d2w
br_turnoff.d2w navbar.inc pwdresform.d2w
cservice.d2w ord_billto.d2w reg_new.d2w
err_addr.d2w ord_details.d2w reg_update.d2w
err_dopay.d2w ord_ok.d2w search_display.d2w
err_reg.d2w ord_pay.d2w translation_text.inc
logon.d2w ord_pay.d2w.org
logon_idforgot.d2w ord_shipto.d2w

We modified the ord_pay.d2w macro by adding a function called
GET_GIFTMESSAGE(). This function basically checks if the merchant has
enabled the gift message feature, and if the merchant has, then it adds some
HTML to the generated page. The source code for our new version of
ord_pay.d2w can be found in Appendix B., “Net.Data macro for the checkout
flow” on page 51.

We query the database to find out whether or not the merchant has enabled
the gift message feature and to get the instructions. The query is done
against the table we created in section 3.4.4. After the query we have the
necessary information to determine whether or not we should add the extra
HTML for the gift message feature.

The new HTML contains the gift message instructions and a new field called
giftmessage. The giftmessage field is of the HTML type called TEXTAREA
and is not known to NCHS. What this means is that the command that
handles the output of the ord_pay.d2w macro is called OrderProcess and it
does not know about our giftmessage field. Hence, it will not do anything with
it. What we need is something that handles our giftmessage field and stores it
with the current order. To do that we must enhance the OrderProcess
command.

There is a description of how all the NCHS commands work in the manual
called "Commands, Tasks, Overridable Function and Database Tables". The
OrderProcess command calls three process tasks, the last of which is
NCHS advanced customization 45

EXT_ORD_PROC. The manual states that the EXT_ORD_PROC task is
used to "perform additional processing". The overridable function (OF)
DoNothingNoArgs is by default assigned to this task. The DoNothingNoArgs
OF does nothing, as the name suggests. We can write a new OF which is
then executed by the EXT_ORD_PROC task.

The new OF, which is called AddGiftMessage, takes the gift message from
our HTML form field giftmessage and stores it with the order. A suitable place
in the database is needed to store the message. Again we look in the manual
"Commands, Tasks, Overridable Function and Database Tables" to find a
space for our gift message. Since we would like to store the gift message with
the order it belongs to we look in the ORDERS table. It has a field called
ORFIELD3 which is "Reserved for merchant customization" and is of type
VARCHAR(254). This field suits our purpose and we will use it to store the gift
message for an order.

Its beyond the scope of this book to explain how to write an OF, instead we
refer to the manual "Commands, Tasks, Overridable Functions and the
E-Commerce Framework". It describes the Net.Commerce v3.x internal
programming model and is a must have for everybody interested in
customizing Net.Commerce. It is updated every 2-3 months and should
therefore be downloaded on a regular basis. When this book was written it
could be downloaded from

http://www.software.ibm.com/commerce/net.commerce/downloads/aix/v3.1.2/dow
ndocs.html

However, as everything on the Web changes often, you may just want to go to

http://www.software.ibm.com/commerce/net.commerce

and then go into the download section and find the documentation section for
Net.Commerce.

The C++ source code for the OF we wrote can be found in Appendix D.,
“Source code for AddGiftMessage OF” on page 73. We made and compiled
the code on AIX and NT, but it should not be a problem to move the OF to
other platforms. The makefile is also in the same appendix.

When you have compiled the code you should end up with a file called
libaddgiftmessage.a for AIX or addGiftMessage.dll for NT. It must be copied
to the bin directory of Net.Commerce.

For AIX, the access permissions should be set accordingly. Stop NCHS
before continuing with the following commands:
46 Exploring Net.Commerce Hosting Server

cp -f libaddgiftmessage.a /usr/lpp/NetCommerce3/bin/libaddgiftmessage.a
chmod 444 /usr/lpp/NetCommerce3/bin/libaddgiftmessage.a
chown bin.bin /usr/lpp/NetCommerce3/bin/libaddgiftmessage.a

The -f in the cp command activates the force feature. If you have already
copied the libaddgiftmessage.a to the bin directory and Net.Commerce use it,
it is sometimes locked even when Net.Commerce is stopped. The force
feature overwrites the file even if its locked, so be careful.

After coping the file you need to make Net.Commerce aware of it, and make it
the new OF for the EXT_ORD_PROC task. This kind of information is kept in
the database and we refer to the manuals "Commands, Tasks, Overridable
Functions and the E-Commerce Framework" and "Commands, Tasks,
Overridable Function and Database Tables" for a complete description. The
SQL we execute to activate our OF is put into a file called
AddGiftMessage.db2.sql. The contents is shown here:

delete from ofs where name=’AddGiftMessage’;

insert into ofs (refnum , dll_name, vendor, product, name, version,
description) values
((select max(refnum) from ofs) + 1, ’libaddgiftmessage.a’, ’IBM ITSO’,
’NC’, ’AddGiftMessage’, 1.0 , ’Shoppers can provide a gift message with
their order’);

delete from task_mer_of where task_rn=(select tkrfnbr from tasks where
tkname=’EXT_ORD_PROC’) and merchant_rn is null;

insert into task_mer_of (task_rn, of_rn) values (
(select tkrfnbr from tasks where tkname=’EXT_ORD_PROC’),
(select refnum from ofs where name=’AddGiftMessage’)
);

commit;

The file AddGiftMessage.db2.sql is executed by the command

db2 -tvf AddGiftMessage.db2.sql

You should of course be logged in as the database instance owner (db2inst1)
and have connected to the database, when you execute the above command.

3.4.6 Adjust the order details page
In the previous sections, we added the gift message menu in the merchant
tool and changed the checkout flow. So the merchant becomes able to enable
NCHS advanced customization 47

and disable the gift message feature and the shopper becomes able to insert
gift message in his/her order information.

In this section, we will modify the manage orders menu in the merchant tool
so that the merchant can manage the gift message that the shopper inserted
in his/her order information.

Using the manage orders feature in the Manage Your Store tab, the
merchant can do the following tasks as you can see in Figure 19:

 • Change the status of an order

 • Display the details of an order

 • Add a comment to an order

 • Remove a comment to an order

Figure 19. the manage orders feature in the Manage Your Store tab

If you select an order in the order list and then click the Display details
button, you can see the order details page of the selected order. The order
details page displays the order, address and payment information. We will
48 Exploring Net.Commerce Hosting Server

append the gift message field at the end of order details page so that the
merchant can see and manage the gift message of the selected order.

The order details page looks like Figure 20 after appending the gift message.
The order details page will display the gift message field whenever the
shopper inserted the gift message in his/her checkout flow of the selected
order. If there is no gift message for the selected order, the order details page
will not display the gift message field.

Figure 20. The order details page displaying the gift message

To append the gift message field in the order details page, we must know the
template file for the order details page. If you explore the
.../NetCommerce3/Tools/xml/nchs/mtool/merchantTool.xml file introduced in
3.4.2, “Add/Remove a menu item in the merchant tool” on page 36 using a
text editor, you will find that the CHS_OrderProcess command is called when
the manage orders menu is selected. Open the
.../NetCommerce3/Tools/config/nchs/orderMgmtTasks.xml file and search for
the task CTnchs.order_mgmt.Main. Then you can see that
NCHS advanced customization 49

.../NetCommerce3/Tools/mpg_templates/nchs/order_mgmt/Main.tem is the
template file for the order management page.

Under the function launchOrderDetails you can see it calls for orderDetails
which uses the orderDetails.tem template.

We have to do two things in order to append the gift message to the order
details page:

 • Retrieve the gift message of the selected order from the ORDERS table

 • If there is a gift message for the selected order, display the gift message at
the end of the order details page

We have to create the procedure in orderDetails.tem that displays the gift
message if one exists. The code for the procedure is below:

addGiftMessage()
{
Query stmt10
Var giftmsg

giftmsg = ""

stmt10 = "select ORFIELD3 from ORDERS where ORRFNBR="+
parameters.selectedOrder

stmt10 | reset()
giftmsg += stmt10.ORFIELD3

if (giftmsg != "null") {
/*
<TABLE BORDER=0 COLS=1 WIDTH="602" BGCOLOR="#6699CC" >
 <TR>
 <TD>Gift message</TD>
 </TR>
</TABLE>

<FORM NAME=’giftmessage’>
 <TEXTAREA rows=10 cols=50 WRAP=on>

$giftmsg$
 </TEXTAREA>
</FORM>
*/
 }
50 Exploring Net.Commerce Hosting Server

We selected ORFIELD3 field of the selected order record from the ORDERS
table and stored it to the variable "giftmsg". We described that we use
ORFIELD3 for the gift message in the ORDERS table in the previous section.

And it is necessary to insert the statement calling the procedure
"addGiftMessage" after the statement that displays the payment information.
You can see the whole orderDetails.tem file after modification in the Appendix
E., “Template file for the order details page” on page 79.

Now you can test the overall function of the gift message feature. You can
enable and disable the gift message feature for the store using the gift
message menu in the merchant tool. And after that you can create a test
order including a gift message, you can see the gift message of that order in
the order details page.

3.5 Creating multiple default store layouts

NCHS only provides for one sample store to start with when creating a store.
It would be nice to allow merchants to choose among a number of different
store layout designs, then let the merchants proceed to create a store based
on what was chosen.

As we mentioned in the previous section, when you create a store, NCHS
copies the file layout.sdb to site.sdb into the
/usr/lpp/NetCommerce/CHS/layout/<env.locale>/ directory. The file
layout.sdb is referenced as a hidden variable in the html page produced by
the template register.tem. Other .sdb files can be created with the page editor
and saved as a variety of layouts. We can then provide a dropdown list box
during store creation to let the merchant select the type of store they want to
start with. Here is the way to accomplish this:

1. Create a store.

2. Modify the sample pages to create a new template.

3. Save the store but do not publish it. This will create a new site.sdb file in
the .../NetCommerce3/CHS/source/id/ directory.

4. Repeat steps 1-3 to create as many sample stores as needed. Each new
store will create an site.sdb file in the directory named by the merchant
reference number.

5. Copy the site.sdb files to the directory
.../NetCommerce/CHS/layout/<env.locale>/ and name them an
appropriate name for the layout with an .sdb extension.

6. Publish the sample stores.
NCHS advanced customization 51

In this example the new templates we created contained only a different
graphic on the first page. This suits our example because it is a simple
change that illustrates the different layouts used. However, in a real situation
the store layouts could be differentiated by number of pages, types of pages,
placement of objects on the pages, and so on, to accommodate the
requirements of merchants that may purchase stores in the mall.

The next step is to allow the merchant to choose the template during store
creation. To do this we will add a dropdown list to the registration page. There
are two ways we might do this. One is modifying the
../NetCommerce3/Tools/mpg_templates/nchs/mtool/register.tem file and the
other is to create a register.html static page so that the register.tem file is not
needed. However, if we create a new register.html file to use in place of
register.tem and an error occurs in the register task, the merchant will be
redirected back to the page that template register.tem creates and not our
new html page. There is not a way to redirect this error condition. Therefore
creating an HTML page to replace register.tem is not an option. We must
modify the register.tem.

The template register.tem is used to display the initial form for creating a
store. After the screen is displayed,
../NetCommerce3/Tools/mpg_templates/nchs/mtool/register.tem is used
again to process the form. We will modify register.tem to display the choices
for the default template to use when creating the store.

To modify register.tem.

1. Edit .../NetCommerce3/Tools/mpg_templates/nchs/mtool/register.tem.
Comment out the line:
<INPUT TYPE=hidden NAME="siteDBFile" VALUE="$env.locale$/layout.sdb">

then add descriptions of the templates offered and a dropdown box for the
variable siteDBfile to list the names of all the template files you created.

2. Save register.tem. You will need to stop then start the web server to reload
the new template file.

Here is a sample of code to create the descriptions of the templates and the
selection box:

<TR><TD WIDTH=30> </TD></TR>
<tr>
<TD WIDTH=30></TD>
<td colspan=2>
<h3> Store Template </h3>
 You may choose from a list several templates from which to create your
store. <p>
52 Exploring Net.Commerce Hosting Server

Here is the current list of available choices:

Standard - This is the standard template.
Bag - This template features a picture of a purple bag.
Carrot - This template features a picture of a carrot.
Mouse - This template features a picture of a mouse.
Truck - This template features a picture of a truck.

<p>
<SELECT NAME="siteDBFile">
 <OPTION VALUE="en_US/layout.sdb">Standard
 <OPTION VALUE="en_US/bag.sdb">Bag
 <OPTION VALUE="en_US/carrot.sdb">Carrot
 <OPTION VALUE="en_US/mouse.sdb">Mouse
 <OPTION VALUE="en_US/truck.sdb">Truck
</select>

</td></tr>
NCHS advanced customization 53

Figure 21. Create Store Logon Screen.

Now that the merchant can choose which template they want to create their
own store from, we need to show the merchant what these choices look like.
So the next step is to allow the merchant to view the sample stores.

In the .../NetCommerce3/html/en_US/cspsite/navigation.html file go to the
section to view the sample store:

<!-- view sample store -->
<TR><TD><IMG NAME="item10" SRC="/CHS/images/bullet_blank.gif" WIDTH=5
HEIGHT=5 ALT="" BORDER=0></TD>
<TD NOWRAP> <A
HREF="javascript:go(10,’/cspsite/view_store_banner.html’,’/cspsite/view_st
ore.html’)"
54 Exploring Net.Commerce Hosting Server

onMouseOver="on(10); status=’view sample store’; return true;"
onMouseOut="off(10); status=’’;">view sample store
 </TD></TR>
 <TR><TD></TD>
 <TD><IMG SRC="/CHS/images/separator.gif" WIDTH=122 HEIGHT=1
ALT="" BORDER=0></TD></TR>

Change the line:

’/cspsite/view_store.html’)"

to:

’/cspsite/view_samples.html’)"

and save the file.

This changes the html file used to view the sample stores. Next, create a
../NetCommerce3/html/en_US/cspsite/view_samples.html with the code that
describes the sample stores and provides links to those stores. Here is an
excerpt from our example:

 carrot

This is a sample store that features a carrot for the main graphic.
Of course a lot more could be said here, blah, blah, blah... and these
stores would have many more features that would distinguish themselves from
the others.
<p>
 truck

This is a sample store that features a truck for the main graphic.
Of course a lot more could be said here, blah, blah, blah... and these
stores would have many more features that would distinguish themselves from
the others.
<p>
 mouse

This is a sample store that features a mouse for the main graphic.
Of course a lot more could be said here, blah, blah, blah... and these
stores would have many more features that would distinguish themselves from
the others.
<p>

The merchant will now be able to view the sample stores and choose one to
use when creating their own store.
NCHS advanced customization 55

Figure 22. View Sample Stores Screen.

3.6 Customizing the process to sell a merchant store

After the merchant creates their store and publishes it, they will want to Open
the store so shoppers can make purchases. At this point, the CSP can either
require the merchant to purchase the store or the CSP can allow the
merchant to try the store out by letting shoppers make purchases for a fixed
period of time before the CSP charges the merchant for the store. Normally
changing the store from New to Closed (so the merchant can Open the store)
is a manual process for the CSP. However, the next two section show how to
automate the process so the merchant can Open the store without any direct
action from the CSP.
56 Exploring Net.Commerce Hosting Server

3.6.1 Selling a merchant store
To customize the site to allow a merchant to purchase at their store from the
CSP and upon successfully completing the payment, the store will be
changed from the ’New’ state to the ’Closed’ state. Thus allowing the
merchant to open their store immediately.

Figure 23. Merchant Tool with Buy this store option.

To accomplish this we must first execute the following steps:

1. Get checkout link for the product.

Select Manage Store and enter the userid and password for the CHS
Services Store (the default userid = ncadmin & password = ncadmin).
Then enter the store name "CHS Services Store". Select the "Set Up Your
Store" tab then select edit catalog. In the catalog editor expand Catalog;
eCommerce Services; Left click on the product Online Store 1-10 Items.
NCHS advanced customization 57

Select remote content. A window will come up with three urls. Copy the
"Add to Shopping Cart" url.

2. Add "Buy This Store"to Merchant Tool Menu (Set up Your Store)

To add the new item in the menu, edit
.../NetCommerce3/Tools/xml/nchs/mtool/merchantTool.xml and add the
following as one line in the setUpYourStoreFolder:

<link name="buyThisStore"
url="/servlet/ShoppingCart?merchant.refno=1052&product.SKU=106
5" users="storeAdmin"/>

where the value for url is the "Add to Shopping Cart" url copied in step 1.
You will have to change ’&’ to ’&’ as well.

3. Edit mtoolNLS.properties in .../NetCommerce3/Tools/lib/nchs.jar. Add a
line:

buyThisStore=buy this store

in the "Merchant tool setup you store links" section. This will associate the
lable ’buy this store’ with the link buyThisStore. Then replace
mtoolNLS.properties file back into nchs.jar making sure the path is
included. Restart the Domino Go Webserver to activate the changes.

4. Create SQL statements in either the macro order_ok.d2w or an
Overridable Function that will (for the CSP store only) change the state of
the merchant’s store from New to Closed.

Using a macro
Edit .../NetCommerce3/macro/en_US/<merchant_rn>/ord_ok.d2w and
change:

%include "CSPstoremodel\ord_ok.d2w"

to:

%include "\CSPstoremodel\csp_ord_ok.d2w"

where <merchant_rn> stands for a merchant reference number.

Then copy

.../NetCommerce3/macro/common/CSPStoremodel/ord_ok.d2w

to

.../NetCommerce3/macro/common/CSPStoremodel/csp_ord_ok.d2w

And make the following changes to csp_ord_ok.d2w:
58 Exploring Net.Commerce Hosting Server

add to the data section:

store_refnum = ""
store_stat = ""

added functions:

%function(dtw_odbc) get_store_refnum()
{

select mer_rfnbr
from acc_usrgrp
where usr_refnum = $(SESSION_RN)

%REPORT {

%ROW {
@dtw_assign(store_refnum, V_mer_rfnbr)

%}
%}

 %MESSAGE{
 100: { %} :CONTINUE
 default: { ERROR in get_store_refnum %}

%}
%}

%function(dtw_odbc) set_store_status ()
{
 UPDATEmcspinfo
 SET mpstate = ’C’
 WHERE mpmenbr = $(store_refnum)

%REPORT {

%ROW {
Store $(store_refnum) set to Close<p>
%}

%}
 %MESSAGE{
 100: { %} :CONTINUE
 default: { ERROR in Set_store_status %}

%}
%}

%function(dtw_odbc) get_store_status ()
NCHS advanced customization 59

{
 SELECT mpstate
 FROM mcspinfo
 WHERE mpmenbr = $(store_refnum)

%REPORT {

%ROW {
@dtw_assign(store_stat, V_mpstate)
%}

%}
 %MESSAGE{
 100: { %} :CONTINUE
 default: { ERROR in get_store_status %}

%}

%}

added to report section:

@get_store_refnum()
@get_store_status()

%IF ($(store_stat) == "N")

@set_store_status()
@get_store_status()
%ENDIF
%IF ($(store_stat) == "C")
Your store is now Closed
 Use the Merchant Tool to Open your store.<p>
%ELSE
Your store could not be placed in the Closed state. Please call you site
administrator.<p>
%ENDIF

Using an Overridable Function
As a better alternative we can change the status of the store in an
Overridable Function (OF) that executes from the task ext_ord_proc. There
are several reasoons why this would be a prefered method. First of all it is
more in line with the E-Commerce framework which is the Net.Commerce
v3.x internal programming model. The E.Commerce Framework prefers
changes to the database be done in OFs. This is because within an OF errors
a better handled and the database can be rolled back. Also related to this
situation is the fact that macros can be executed directly from the browser.
We do not want the merchant to execute csp_ord_ok.d2w directly without
purchasing the store.
60 Exploring Net.Commerce Hosting Server

The OF OpenStore is listed in Appendix G, “Source code for OpenStore.cpp”
on page 221 as the file OpenStore.cpp. This OF first of all uses the User
object to get the ShopperRefNum:

//
// Get the current shopper

 User* user = (User*) Env.Seek(NC_Environment::_VAR_Shopper);
 if (user == NULL)
 {
 error.nls(&_ERR_CANT_LOAD_SHOPPER) << endl;
 return false;
 }
 String ShopperRefNum = user->getValue(User::_COL_REF_NUM);

We then use this ShopperRefNum to get the StoreRefNum which is the
reference number of the store that is being purchased:

//
// get store ref number or store being purchased

 String StoreRefNum;
 String Stmt;

 Stmt.Clean() << "SELECT MER_RFNBR"
 << " FROM ACC_USRGRP"
 << " WHERE USR_REFNUM = " << ShopperRefNum;

SQL Sql2(*(DataBaseManager::GetCurrentDataBase()), Stmt);
 Row SqlRow2;
 if (Sql2.getNextRow(SqlRow2) == ERR_DB_NO_ERROR)
 StoreRefNum = SqlRow2.getCol(1);

Then we get the store status:

//
// get store status

 const char* MPState;
 const char* NState = "N";

 Stmt.Clean() << "SELECT mpstate "
 << " FROM mcspinfo "
 << " WHERE mpmenbr = " << StoreRefNum;
NCHS advanced customization 61

 SQL Sql(*(DataBaseManager::GetCurrentDataBase()), Stmt);
 Row SqlRow;

 if (Sql.getNextRow(SqlRow) == ERR_DB_NO_ERROR)
 {
 MPState = SqlRow.getCol(1).c_str();
 }
 else
 {

return false;
 }

and if the status is ’N’ we update the status to ’C’:

if (strncmp(MPState, NState, 1) == 0)
{
 String Stmt;
 Stmt << "UPDATE mcspinfo "
 << " SET mpstate = ’C’ "
 << " WHERE mpmenbr =" << StoreRefNum;

 SQL Sql(*(DataBaseManager::GetCurrentDataBase()), Stmt);
}

which will allow the merchant to change the status to Open at will. (The SQL
can be combined in this OF, however it is represented this way to illustrate
the steps taken).

Compile the code using the makefile provided for your platform. The resulting
file should be placed in the /NetCommerce3/bin directory.The following SQL
will allow Net.Commerce to use your new OF.

for NT

insert into ofs (refnum , dll_name, vendor, product, name, version,
description) values
((select max(refnum) from ofs) + 1, ’OpenStore.dll’, ’IBM ITSO’, ’NC’,
’OpenStore’, 1.0 , ’Changes status of merchant store from New to Closed’);

insert into task_mer_of (task_rn, merchant_rn, of_rn) values (
(select tkrfnbr from tasks where tkname=’EXT_ORD_PROC’),1052,
(select refnum from ofs where name=’OpenStore’)
);

commit;

For AIX:
62 Exploring Net.Commerce Hosting Server

insert into ofs (refnum , dll_name, vendor, product, name, version,
description) values
((select max(refnum) from ofs) + 1, ’OpenStore.a’, ’IBM ITSO’, ’NC’,
’OpenStore’, 1.0 , ’Changes status of merchant store from New to Closed’);

insert into task_mer_of (task_rn, merchant_rn, of_rn) values (
(select tkrfnbr from tasks where tkname=’EXT_ORD_PROC’),1052,
(select refnum from ofs where name=’OpenStore’)
);

commit;

Replace ’1052’ in the above examples with the store reference number for the
CSP store.After executing the above, stop and start the Net.Commerce
server.

Additional information regarding Overridable Functions can be found in
"Commands, Tasks, Overridable Functions and the E-Commerce Framework"
which can be downloaded from www.ibm.com/net.commerce.

The code in the appendix for OpenStore can be compiled on either AIX or NT.
The Appendix also includes the makefile for NT as the file OpenStore.nt.

5. Lastly, remove the ’buy store’ menu item from the navigator frame in the
main screen. Edit the file
.../NetCommerce3/html/en_US/cspsite/navigation.html. Delete the
following code.

<!-- buy store -->
 <TR><TD><IMG NAME="item9" SRC="/CHS/images/bullet_blank.gif"
WIDTH=5 HEIGHT=5 ALT="" BORDER=0></TD>
 <TD NOWRAP> <FONT FACE="Arial,Helvetica,sans-serif"
SIZE=2><A
HREF="javascript:go(9,’/cspsite/buy_store_banner.html’,’/cspsite/buy_store
.html’)"

onMouseOver="on(9); status=’buy store’; return true;" onMouseOut="off(9);
status=’’;">buy store
 </TD></TR>
 <TR><TD></TD>
 <TD><IMG SRC="/CHS/images/separator.gif" WIDTH=122 HEIGHT=1
ALT="" BORDER=0></TD></TR>

 <TR><TD></TD>
 <TD> </TD></TR>
NCHS advanced customization 63

Now the merchant can only purchase the store after creating a store. This
gives the merchant the ability to open the store upon purchasing it.

3.6.2 Try and Buy
Try and Buy is a feature that would allow merchants to create a store and
open for business without paying for the store. This would let the merchant try
the store out on customers before purchasing the store. After an specific
period of free time, the merchant must pay for the store or it would be closed
by the CSP.

One way to accomplish this is to follow the instructions in the section 3.6.1,
“Selling a merchant store” on page 57 for selling a store to a merchant,
however, create the menu item as ’60 Day Trial’ and link it to the ’Add to
shopping cart’ link for a product called ’60 Day Trial’ with a price of $0.00.
Collect the merchant information and credit card number and let the merchant
know that they will be billed at the end of 60 days if they do not cancel by
e-mail.

3.7 Adding mall-wide navigation feature

Most Commerce Hosting Service Providers today provide a value added
service to their customers by creating a mall to house all their merchants in.
This allows the shoppers to go to one location to access multiple shops. For
the CSP, it is a way to market the products and services that are offered. This
section explains how a CSP can add a mall wide navigation feature to its
mall.

Before going into detail on how this can be done. Figure 24 on page 65 and
Figure 25 on page 66 shows the difference between a before and after a mall
wide navigation feature is created.

To create a mall-wide navigation feature, a frame is built around the Mall. The
example is provided based on the assumption that the user is familiar with
HTML frame concepts.
64 Exploring Net.Commerce Hosting Server

Figure 24. Before mall wide navigartion feature is created
NCHS advanced customization 65

Figure 25. Mall Wide Navigation Feature added

On the left of the window in Figure 25 on page 66, there is a navigation bar
which allows the shoppers to select the stores in which they are interested.
When a store is selected, the contents of the store is displayed in the main
window without changing the rest of the features in the page as shown in
Figure 26 on page 67. In this example "MyShop" is selected and the store is
displayed in the main window. Notice that the Mall identity is still preserved
and the Mall directory can still be seen on the left window.

Banner.d2w

malldir.d2w

mallinfo.d2w

navbar.d2w
66 Exploring Net.Commerce Hosting Server

Figure 26. The Mall page with a shop selected

To create a mall wide navigation feature, information regarding the links to
the stores are required. As an example, we will modify the Demomall that is
provided as part of NCHS. The macros and html files of the Demomall can be
located in the following directories respectively:

/usr/lpp/NetCommerce3/macro/en_US/demomall
/usr/lpp/NetCommerce3/html/en_US/demoamall

When accessing the Demomall home page,

http://<hostname>/demomall/basemall.htm

the following macro mall_dir.d2w is executed when the "Guest Shopper" link
is selected.This macro retrieves information about the Demomall and the
stores in the Demomall from the database and displays the information on the
page. We can directly execute the macro with this command on the browser:
NCHS advanced customization 67

http://<hostname>/cgi-bin/ncommerce3/ExecMacro/mall_dir.d2w/report

We will use the macro mall_dir.d2w as the basis of our example. Using
TABLES and FRAMES, and knowing which macro to modify, adding a mall
wide navigation frame can easily be accomplished.

1. Create a new macro which divides the page into 4 frames. An example of
the macro is listed:

mallframes.d2w

%define {
 SHOWSQL="NO"
%}

%HTML_REPORT {

<HTML>

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">

</HEAD>

<FRAMESET ROWS="80,*,150" BORDER="0" FRAMEBORDER="NO">

 <FRAME NAME="Banner"
SRC="/cgi-bin/ncommerce3/ExecMacro/demomall/Banner.d2w/report"
FRAMEBORDER="NO" SCROLLING="NO">

 <FRAMESET COLS="20%, *">
 <FRAME NAME="Sidenav"
SRC="/cgi-bin/ncommerce3/ExecMacro/demomall/malldir.d2w/report"
FRAMEBORDER="0">
 <FRAME NAME="Main"
SRC="/cgi-bin/ncommerce/ExecMacro/demomall/mallinfo.d2w/report"
FRAMEBORDER="0">
 </FRAMESET>

 <FRAME NAME="Navbar"
SRC="/cgi-bin/ncommerce3/ExecMacro/demomall/navbar.d2w/report"
FRAMEBORDER="NO" SCROLLING="NO">
</FRAMESET>
68 Exploring Net.Commerce Hosting Server

</HTML>

%}

The above macro creates a page with 4 frames. Each frame will then execute
its own macro again. A brief description of each macro is provided:

 • banner.d2w - Displays mall information.

 • malldir.d2w - Displays the list of stores in the mall.

 • mallinfo.d2w - Displays information about the mall.

 • navbar.d2w - Displays the navigation bar for the mall.

2. The code for the macros above are actually all taken from mall_dir.d2w
and put into separate macro files so that each macro is executed in a
separate frame. For illustration purposes, we will create malldir.d2w as an
example. Use the main function from mall_dir.d2w and apply it in the new
macro malldir.d2w. Do the same for the rest of the macros, using the
relevant parts.The main function used in malldir.d2w is shown below:
(Please refer to the Appendix A for the full code)

%function(dtw_odbc) mall_dir(){

 select merfnbr, mestname, mescnbr, scgry, metbase, methmb
 from merchant, strcgry
 where mescnbr=scrfnbr
 order by scgry

 %REPORT{
 %ROW{

 %if ((V_mescnbr == last_prod) && (V_methmb != null))
 <HR width=100>

 $(V_mestname)<P>
 %elif ((V_mescnbr == last_prod) && (V_methmb == null))
 $(V_mestname)<P>
 %elif ((V_mescnbr != last_prod) && (V_methmb != null))
 <HR width=100> <h2>$(V_scgry)</h2>

 $(V_mestname)<P>
 %else
 <HR width=100> <h2>$(V_scgry)</h2>
 $(V_mestname)<P>
NCHS advanced customization 69

 %endif
 %}
%}

3. Once the 4 macros are created, place them in the macro directory.

/usr/lpp/NetCommerce3/macro/en_US/demomall

4. Create an HTML file that will execute the first macro created in Step 1
(See Figure 27 on page 70). A very simple command that can be used in
the HTML file would be:

<A HREF="/cgi-bin/ncommerce3/ExecMacro/<macro file name from Step
1>/report">Click here to Enter the Mall.

Figure 27. A Mall Page

You may want to take the user directly to the Mall directory instead of having
them selecting to enter the mall by clicking on a link. One way of doing so
would be to code all the frames logic into a HTML file. The code to do so is
listed below:

<HTML>
70 Exploring Net.Commerce Hosting Server

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
<TITLE>$(LongStoreName)</TITLE>

</HEAD>

<FRAMESET ROWS="80,*,150" BORDER="0" FRAMEBORDER="NO">

 <FRAME NAME="Banner"
SRC="/cgi-bin/ncommerce3/ExecMacro/demomall/Banner.d2w/report"
FRAMEBORDER="NO" SCROLLING="NO">

 <FRAMESET COLS="20%, *">
 <FRAME NAME="Sidenav"
SRC="/cgi-bin/ncommerce3/ExecMacro/demomall/malldir.d2w/report"
FRAMEBORDER="0">
 <FRAME NAME="Main"
SRC="/cgi-bin/ncommerce/ExecMacro/demomall/mallinfo.d2w/report"
FRAMEBORDER="0">
 </FRAMESET>

 <FRAME NAME="Navbar"
SRC="/cgi-bin/ncommerce3/ExecMacro/demomall/navbar.d2w/report"
FRAMEBORDER="NO" SCROLLING="NO">
</FRAMESET>

</HTML>

After saving the code above to a HTML file (e.g. onestopmall.htm) in the
directory

/usr/lpp/NetCommerce3/html/en_US/demomall

access the site from the browser using the following URL:

http://<hostname>/demomall/onestopmall.htm

Once that is done, you are all set and ready. The mall wide navigation feature
is ready to be used. Please note that the store macro files have to be
modified such that the contents are displayed in the correct frames.
NCHS advanced customization 71

3.8 Different levels of service by each merchant

As a Commerce Service Provider (CSP), you might want to place restrictions
on your merchants. Different fees can be charged for different levels of
services.

In this section we will add a new feature (e.g. gift message feature, etc.) that
is accessible by merchants who are authorized to do so. To implement this
verification, we will use the field SHFIELD1 which is reserved for merchant
customization in the SHOPPER table. The SHFIELD1 can be set to either

 • "0" - the merchant is not authorized to access the new feature or

 • "1" - the merchant is authorized to access the new feature.

Each time a merchant logs in and selects the new feature, the field
SHFIELD1 is checked. If the merchant has authorization, they will be allowed
to access that page. If the merchant does not have authorization, they are
given the option to purchase that access from the CSP.

Once the merchant has purchased the access, the SHFIELD1 is updated to
"1" such that the merchant can access the new feature in subsequent logons.

To do this, there are several pieces of information that you need to obtain
first.

1. Merchant reference number and the product SKU

One way of allowing your merchants to have additional features in their shops
would be to allow them to purchase that access from your CHS Service Store.
The product (Additional Service Feature is a product in the CHS Service
Store) must first be inserted into the catalog. Once that is done, the
information regarding the CHS Service Store and the product can be
retrieved. An easy way to obtain all this information is by accessing the CHS
Service Store and editing the products in the store.

 • Log in as the CHS Service Store Administrator (use the sample provided
or create your own service store) and select edit catalogs from the menu
item under the Set Up Your Store tab.

 • Select the product (in this example, the product selected will be the
Additional Service Feature item)

 • Move the cursor over the product item, and left click the mouse. A new
menu will appear on the page as shown in Figure 28 on page 73.
72 Exploring Net.Commerce Hosting Server

Figure 28. Service Store

 • Select the option Remote Content to obtain the following information
shown in Figure 29 on page 74.
NCHS advanced customization 73

Figure 29. Result of selecting Remote Content

Under the heading Add to shopping cart link, the information regarding the
command, the merchant reference number and the product SKU is listed.

2. Add a menu item in the merchant tool.

In this example, we will call this new feature, Additional service and we will
place this new menu item just after the open/close Store menu item in the
merchant tool, under the Set Up Your Store tab. Note that this can be
replaced by any name and be placed anywhere in the merchant tool. Open
the file

/usr/lpp/NetCommerce3/Tools/xml/nchs/merchantTool.xml

In this file locate the following code:

<link name = "openCloseStore"
url = "/servlet/MerchantAdmin?DISPLAY=CTnchs.mtool.StoreState"
users = "storeAdmin" />

Add the following code after the openCloseStore section:

<link name = "openCloseStore"
url = "/servlet/MerchantAdmin?DISPLAY=CTnchs.mtool.StoreState"
users = "storeAdmin" />
<link name = "AdditionalService"
url="/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/service.d2w/report?mer
fnb=$env.merchant_id$"
74 Exploring Net.Commerce Hosting Server

users = "storeAdmin,catalogAdmin" />

Save and close the file.

A corresponding change needs to be done in mToolsNLS.properties file
located in the nchs.jar file. The nchs.jar file is similar to a zipped file and can
be open using applications like WinZip. Open the file:

/usr/lpp/NetCommerce3/Tools/lib/nchs.jar

Extract and open the file

mtoolsNLS.properties

Locate the section called # Merchant tool set up your store links and add
the following AdditionalService link to that section:

Merchant tool set up your store links
AdditionalService= Additional service
storeActivity=store activity
getMerchantTool=get merchant tool
getMerchantGuide=get merchant guide
publishStore=publish store
paymentMethods=payment methods
editPages=edit pages
editCatalog=edit catalog

Save and close the file. If you access the merchant tool now, you should see
the new menu item Additional service located just after the open/close
Store as shown in Figure 30 on page 76.
NCHS advanced customization 75

Figure 30. Additional service menu item is added

3. Selecting Additional service

When a new menu item is added to the merchant tool, a corresponding code
must be created and then executed when the new menu item is selected. In
Step 1 we created a new menu in the merchant tool. Now we will create the
action (code) that will be executed when the Additional service menu item is
selected.

We inserted the following code in the merchantTool.xml file:

<link name = "AdditionalService"
url="/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/service.d2w/report?mer
fnb=$env.merchant_id$"
users = "storeAdmin,catalogAdmin" />

When the Additional service menu item is selected, the macro service.d2w is
executed with the merchant reference number as the parameter.

The macro service.d2w will first check if the merchant has authority to access
the Additional service feature. The code to check the field SHFIELD1 in the
SHOPPER table is listed below:
76 Exploring Net.Commerce Hosting Server

%function(dtw_odbc) check_status()
{
 SELECT shfield1, shlogid
 FROM shopper
 WHERE shlogid=’$(SESSION_ID)’

 %REPORT {
 %ROW {
 @DTW_assign(STATUSFIELD, V_shfield1)
 %}
 %}

The function above selects the SHFIELD1 from the SHOPPER table and then
assigns the result to the variable STATUSFIELD.

In the HTML Report Section of the macro, we will check the STATUSFIELD
and then point the merchant to the right link.

@check_status()

%if (STATUSFIELD != "1")

 <TABLE>
 <TR>
 <TD>You do not have access to this feature. This additional feature
allows the merchant to provide gift messages service to your customers.
</TD>
 </TR>
 <TR>
 <TD>Please click h
ere for more information on how to enable the Additional feature.</TD>
 </TR>
 </TABLE>

%else
 <TABLE>
 <TR>
 <TD>YES! Congratulations you now have access to this feature.</TD>
 </TR>
 </TABLE>

%endif

Save the macro service.d2w in directory

/usr/lpp/NetCommerce2/macro/en_US/ncadmin/storemgr
NCHS advanced customization 77

Please refer to the Appendix for the full sample code.

When the merchant clicks on the Additional service link, the following is
displayed on the browser as shown in Figure 31 on page 78.

Figure 31. When the merchant with no authorization selects the Additional service link

4. Linking to the shopping cart.

If the merchant chooses to purchase the authorization to access the
Additional feature, the merchant will be brought to the CSP’s Service Store’s
shopping cart page with the product (Additional Service Feature is sold as a
product in the CSP’s Service Store) already placed in the shopping cart as
shown in Figure 32 on page 79. The code to link to the shopping cart page is
listed below:

Please click h
ere for more information on how to enable the Additional feature.
78 Exploring Net.Commerce Hosting Server

The command, merchant reference number and the product SKU is obtained
from Step 1.

Figure 32. The Shopping Cart page when the merchant chooses to purchase access

5. Updating the SHFIELD1 field in the SHOPPER table

Once the merchant has purchased the access, remember that the SHFIELD1
in the SHOPPER table has to be updated to reflect the changes. This update
should be executed in the macro ord_ok.d2w in the CSP’s service store.

 • Edit the file

/usr/lpp/NetCommerce3/macro/<merchant reference number of CHS Service
Store>/ord_ok.d2w

The content of the file will show

%include "<merchant reference number of CHS Service Store>/include.inc"
%include "CSPstoremodel/ord_ok.d2w"

 • Change the second include statement to

%include "<merchant reference number of CHS Service Store>/ord_ok.d2w"
NCHS advanced customization 79

 • Copy ord_ok.d2w from the CSPstoremodel directory and rename it to
new_ord_ok.d2w in the directory

/usr/lpp/NetCommerce3/macro/<merchant reference number of CHS Service
Store>/

Any references made to ord_ok.d2w will now point to the new_ord_ok.d2w.

The macro page on the browser is shown in Figure 33 on page 80. The code
to update the SHOPPER table is :

 UPDATE shopper
 SET shfield1 = ’1’
 WHERE shlogid = ’$(SESSION_ID)’

The above code is placed in the ord_ok.d2w macro because that is the macro
where the merchant will confirm the order and the payment. Please refer to
the Appendix for the full sample code.

Figure 33. Payment Information and Checkout page (ord_ok.d2w)

Once the ord_ok.d2w macro has been modified, you can now use the
restriction feature to allow different levels of services for your merchants.
80 Exploring Net.Commerce Hosting Server

Save the ord_ok.d2w in directory

/usr/lpp/NetCommerce3/macro/en_US/<merchant reference number of your the
CHS Service Store>

If the merchant now selects Additional service menu item, they will have
access to that page as seen in Figure 34 on page 81. In this example, when
the merchant has access, a page informing the merchant of their success is
used.

<TABLE>
 <TR>
 <TD>YES! Congratulations you now have access to this feature.</TD>
 </TR>
 </TABLE>

Figure 34. You now have access.

6. Making sure only purchases of the Additional Feature product will update
the SHFIELD1.
NCHS advanced customization 81

As a CSP, your Service Store would have a variety of products and services
for sale, the Additional Service Access being one of the products. In Step 5,
we updated the SHFIELD1 in the macro ord_ok.d2w. This macro is used
everytime a purchase a made, regardless of the products selected. To ensure
that SHFIELD1 is only updated when the Additional Feature is selected,
some additional modifications are required.

In the macro ord_ok.d2w, look for

%function(dtw_odbc) DISPLAY_DETAILS_LIST()

In the SELECT statement, add the field PRNBR in. This will select PRNBR
(the SKU number) from the database.

select strfnbr, stsanbr, stshnbr, stmenbr, stprnbr, stprice, stquant,
stcpcur, prrfnbr, prldesc2, prsdesc, salname, safname, prnbr
from shipto, product, shaddr
wherestshnbr=$(SESSION_RN) and stmenbr=$(MerchantRefNum) and
stprnbr=prrfnbr and stornbr=$(order_rn)
and stsanbr=sarfnbr
order by stmenbr, stsanbr, strfnbr

Once that is done, insert the following logic to check the PRNBR under the
same function, under the %ROW section:

%ROW{

@DTW_ASSIGN(PRODSKU, V_prnbr)

%IF (PRODSKU == "SKU1234")
@DTW_ASSIGN(UPDATE, "1")
%ENDIF

From Step 1, we know that the Additional Feature SKU is SKU1234, we will
use that SKU number in the if statement.

In the HTML Report Section, place the following code just before
@DISPLAY_CUSTOM_NAVBAR()

%IF (UPDATE == "1")
@update_status() #code to update the SHFIELD1
<center>
 <TABLE>
 <TR>
 <TD>Click <A
href="/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/service.d2w/report?me
rfnb=$(MerchantRefNumber)">here to access the Additional Feature. </TD>
 </TR>
82 Exploring Net.Commerce Hosting Server

 </TABLE>
</center>
%ENDIF

The code above will only update the SHFIELD1 only if the Addtional Feature
product is chosen and allow the user to link to the Additional Service page
from the Order Confirmation page as shown in Figure 35 on page 83.

Figure 35. After a successful Purchase

3.9 Changing store creation process

3.9.1 Introduction
During the store creation process, not much information about the merchant
is gathered. As designed, Net.Commerce Hosting Server requires a logon ID,
password, store name and store currency in order to create a store. Once a
store has been created, a merchant can, but not necessarily, enter additional
information about the store such as contact name, address, phone and store
description by clicking the Store Information button under the Set Up Your
Store tab of the merchant tool.
NCHS advanced customization 83

The default process is as follows. When a merchant clicks Create Store from
the CSP site, the Create Profile form is presented. After completing this
form, the store is created and a merchant can then, (if they choose to do so),
fill in additional information about themselves and the store by choosing
Store Information

In some cases the CSP may want to present the Store Information form to
the merchant as part of the initial step of store creation in order to gather
more information about the merchant and the store being created before
store creation has actually occurred. This ensures the maximum amount of
information is gathered regarding the store.

In order to present the Store Information form in the initial step of store
creation, the Create Profile form can be modified to present the Store
Information form after it is submitted rather than calling the store creation
command. The Store Information form can then call the store creation
command. Essentially, a copy of the Store Information form is inserted into
the store creation flow. After adding this customization, if a merchant chooses
Store Information from the Set Up Your Store tab after store creation, the
functionality will remain the same. Figure 36 illustrates the store creation flow
both before and after customization.

Figure 36. Customizing store creation flow

3.9.2 Changing store creation process
The following sections will guide you in implementing this solution on AIX. A
similar guide for Windows NT can be found on Appendix G.1, “Customizing
store creation process on Windows NT” on page 181.

1. Make a copy of the Store Information form to be inserted into the store
creation flow.

The Store Information form layout is contained in the StoreInfo.tem file.
This file defines how the form looks, what text is used and the actions the
form performs. A copy of this file will be modified and inserted into the
store creation flow.

S to re
C re a t io n

C o m m a n d
S to re

In fo rm a t io n

F o rm

Before After

F o rm

P ro fi le

C re a te

F o rm

P ro fi le

C re a te
S to re

C re a t io n
C o m m a n d
84 Exploring Net.Commerce Hosting Server

Log in as root and make a copy of the StoreInfo.tem file located in the
/usr/lpp/NetCommerce3/Tools/mpg_templates/nchs/mtool/ directory.
Name this copy Register2.tem and make sure its permissions are set
correctly by issuing the following command:

> chmod 666 Register2.tem

2. Modify the Store Creation form to present the new Store Information
form after it is submitted.

The Store Creation form layout is contained in the Register.tem file. This
file defines how the form looks, what text is used and the actions the form
performs. This file will be modified to call the new Store Information form
instead of the store creation command.

To edit the Register.tem file, add write permission to the file.

> chmod +w Register.tem

Open the file Register.tem in a text editor and comment out the following
line, by adding -- to the beginning of each line. This will disable the call to
the store creation command by this form.

-- /*

--<SCRIPT>top.location.href=’http://$env.hostname$/servlet/MerchantAdmi

n?PROCESS=CTnchs.mtool.Filter&XMLFile=nchs.mtool.merchantTool.xml&start

ingFolder=getStartedFolder’; </SCRIPT>

-- */

To direct this form to the new Store Information form, add the following
line just above the commented out line:

/*

<SCRIPT>location.href=’http://$env.hostname$/servlet/MerchantAdmin?DISP

LAY=CTnchs.mtool.Register2’; </SCRIPT>

*/

Make sure that the file being modified in step 2 is Register.tem and the
file being modified in step 3 is Register2.tem.

Note
NCHS advanced customization 85

Save this file and exit. Change the permissions back to their original state.

> chmod 666 Register.tem

3. Modify the new Store Information form to call the store creation
command.

To edit the Register2.tem file, add write permission to the file.

> chmod +w Register2.tem

Open the file Register2.tem in a text editor and comment out the following
line, by adding -- to the beginning of each line. This will disable the
displaying of the merchant tool Get Started tab.

-- /*

--<SCRIPT>window.location="http://$env.hostname$/servlet/MerchantAdmin?

DISPLAY=CTnchs.mtool.StoreInfoConfirm"; </SCRIPT>

-- */

In order to direct the new Store Information form to call the store creation
command, add the following line after the commented out line:

/*

<SCRIPT>top.location.href=’http://$env.hostname$/servlet/MerchantAdmin?

PROCESS=CTnchs.mtool.Filter&XMLFile=nchs.mtool.merchantTool.xml&startin

gFolder=getStartedFolder’; </SCRIPT>

*/

To display the correct error messages during the new step in the store
creation process, find the line containing the
$mtoolNLS.storeInfoErrorMandatoryTop$ variable and change it to
$mtoolNLS.errorMandatoryTop$, then find the line containing the
$mtoolNLS.storeInfoErrorMandatoryEnd$ variable and change it to
$mtoolNLS.errorMandatoryEnd$.

In order to disable the call to the old task, comment out the following line
by adding -- to the beginning of the line:

-- <INPUT TYPE=hidden NAME="PROCESS" VALUE="CTnchs.mtool.StoreInfo">

Now add a similar line beneath the commented out line to call the new
Register2 task. This tells the form which task to use for processing.
86 Exploring Net.Commerce Hosting Server

<INPUT TYPE=hidden NAME="PROCESS" VALUE="CTnchs.mtool.Register2">

Save this file and exit. Change the permissions back to their original state.

> chmod 666 Register2.tem

4. Add the new store creation step to the mtoolTasks.xml file so that it will be
recognized by Net.Commerce Hosting Server.

The mtoolTasks.xml file contains a listing of the xml tasks that
Net.Commerce Hosting Server recognizes. This file contains the
necessary information about each task such as file locations, required
parameters and access controls.

To edit the mtoolTasks.xml file in the
/usr/lpp/NetCommerce3/Tools/config/nchs/ directory, add write permission
to the file.

> chmod +w mtoolTasks.xml

Open the mtoolTasks.xml file and add the following lines at the bottom of
the file, just above the </taskConfig> line. This will register the new step in
the store creation process with Net.Commerce Hosting Server and direct it
to the proper files.

<task name="CTnchs.mtool.Register2"

template="nchs/mtool/Register2.tem"

dbSessionRequired="true"

requiredProcessParams="contactEMail1"/>

If the CSP wants to have other mandatory fields in addition to the e-mail
field, they can be added to the requiredProcessParams list. Save this file and
exit. Change the permissions back to their original state.

> chmod 666 mtoolTasks.xml

5. Stop and restart the Net.Commerce instance, administrator server and
webserver as directed in "Installing and Getting Started Guide",
GC09-2808-01. Figure 37 on page 88 and Figure 38 on page 89 show the
NCHS advanced customization 87

new store creation flow.

Figure 37. Store creation form.
88 Exploring Net.Commerce Hosting Server

Figure 38. Newly added Store Information form.

3.10 Restricting creation of merchant store

3.10.1 Introduction
A unique feature of Net.Commerce Hosting Server is the ability of a
prospective merchant to "test drive" the software before actually purchasing
the store. This gives the Commerce Service Provide, (CSP), a way to market
their product more effectively. However, a CSP may want to require payment
before a store can be created. This allows the CSP more control over the
number of stores existing on their server and eliminates a large number of
stores created just out of curiosity.
NCHS advanced customization 89

A CSP can disable this feature by setting a small fee to purchase store
creation access, thus allowing the prospective merchant to "test drive" the
software before actually buying the store. The Create Store button on the
navigation bar will link to an HTML page with instructions on how to purchase
store creation access. After an order has been successfully processed for
store creation access, a link to the store creation function will appear on the
bottom of the order confirmation page for the merchant to then create their
store.

The following sections will guide you in implementing this solution on AIX. A
similar guide for Windows NT can be found on Appendix G.2, “Restricting
creation of merchant store on Windows NT” on page 185.

3.10.2 Restricting creation of merchant store
1. Make store creation access available for purchase from your Services

Store site by adding a store creation access product to your catalog.

Open the cspsite and click on Manage Store. Log on as the Commerce
Hosting Server, (CHS), services store manager, (default logon and
90 Exploring Net.Commerce Hosting Server

password is chsservicesstore), as shown in Figure 39.

Figure 39. CHS services store logon screen.

Add an item to the catalog for store creation access by clicking Edit Catalog.
Name the new item "Store Creation Access". Before exiting the Catalog
Editor, be sure to write down the url Add to Shopping Cart link. It will be
needed in the next step. To obtain this url, click once on the newly created
Store Creation Access product and click Remote Content, as shown in
NCHS advanced customization 91

Figure 40. Copy the url under Add to Shopping Cart link.

Figure 40. Obtaining the Add to Shopping Cart link.

In addition to needing this url for the next step, there are two pieces of
information that you will need in later steps that should be obtained at this
time. In the url, there are name/value pairs. Extract the store reference
number and the product SKU number from these name/value pairs. For
example:

http://<hostname>/servlet/ShoppingCart?merchant.refno=XXX&product.SKU=YYY

In this example, XXX, and YYY are the store reference number and product
SKU number, respectively.

Exit the Catalog Editor and then publish the CHS Services Store by clicking
Publish Store.

2. Change the logic of the store creation process so that a check for access
privilege is made prior to allowing access to store creation.

When the prospective merchant clicks Create Store the objective is to
only allow access to store creation if it has been purchased. The Create
Store link calls a static html file will displays the Create Store form. To
92 Exploring Net.Commerce Hosting Server

disable store creation access until access has been purchased, this link
will be changed to call macro instead. This macro will check to see if store
creation access has been purchased and will then display the appropriate
screen.

To create a macro that checks for store creation privileges, open a text
editor and type the following, (adding the Add to Shopping Cart link
where instructed):

%{===

The sample Templates, HTML and Macros are furnished by IBM as simple

examples to provide an illustration. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot

guarantee reliability, serviceability or function of these programs. All

programs contained herein are provided to you "AS IS".

The sample Templates, HTML and Macros may include the names of

individuals, companies, brands and products in order to illustrate them

as completely as possible. All of these are names are fictitious and

any similarity to the names and addresses used by actual persons or

business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D24

(c) Copyright IBM Corp. 1998, 1999. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp

===%}

%function(dtw_odbc) check_status() {

SELECT shfield2, shlogid

FROMshopper

WHERE shlogid=’$(SESSION_ID)’

%REPORT {

%ROW {

@DTW_assign(STATUSFIELD, V_shfield2)

%}

%}

%}

%{==%}
NCHS advanced customization 93

%{ HTML Report Section %}

%{==%}

%HTML_REPORT{

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=iso-8859-1">

<meta NAME="keywords"

CONTENT="Net.Commerce, Commerce Hosting Server, internet, internet

service provider, web hosting, dial up access">

<title>IBM Net.Commerce Hosting Server</title>

</head>

<body>

@check_status()

%if (STATUSFIELD != "1")

<TABLE>

<TR>

<TD>To create a store, click the link below and purchase access for only

$25!</TD>

</TR>

<TR>

<TD>Please click <A href="*** Enter Add to Shopping Cart url here

***">here to purchase store creation access.</TD>

</TR>

</TABLE>

%else

<script Language="JavaScript">

var launch_str = "Please be patient. The merchant tool will be launched

in another window.";

var unsupported_browser_text1 = "The merchant tool requires either:";

var unsupported_browser_item1 = "Netscape Navigator 4.06 or higher";

var unsupported_browser_item2 = "Internet Explorer 4.01 or higher";

var unsupported_browser_text2 = "Install the correct browser before

creating a store.";

function create_store() {

if ((navigator.appName.indexOf("Netscape") > -1 &&

parseFloat(navigator.appVersion) >= 4.06) ||

(navigator.appName.indexOf("Microsoft") > -1 &&

parseFloat(navigator.appVersion) >= 4.0)) {

document.write("<p>" + launch_str+ "
");
94 Exploring Net.Commerce Hosting Server

var url = "/servlet/MerchantAdmin?";

var target = window.open("", "MerchantTool",

"resizable=yes,scrollbars=yes,status=yes,width=750,height=500,screen=0,

screenY=0,left=0,top=0");

if (target.document.URL.indexOf(url) == -1)

target.location.href = url + "GOTO=Banner&body=RegisterPage";

target.focus();

} else {

document.write("<p>" + unsupported_browser_text1);

document.write("");

document.write("" + unsupported_browser_item1 + "");

document.write("" + unsupported_browser_item2 + "");

document.write("");

document.write(unsupported_browser_text2);

}

}

create_store();

</script>

%endif

Please send all

inquiries to: webmaster@CHSNet.com

Site comments: webmaster@CHSNet.com

© 1998, IBM Net.Commerce for CHS.

</p>

</body>

</html>

%}

Save this file as creation_access.d2w in the
/usr/lpp/NetCommerce3/macro/en_US/ncadmin/sitemgr/ directory. Make
sure the file has the correct permissions set by issuing the following
commands:
NCHS advanced customization 95

> cd /usr/lpp/NetCommerce3/macro/en_US/ncadmin/sitemgr/

> chmod 644 ./creation_access.d2w

3. Edit the navigation.html file to change the link for Create Store.

The Create Store link in the navigation.html file calls a static html file will
displays the Create Store form. To disable store creation access until
access has been purchased, this link will be changed to call the newly
created creation_access.d2w macro instead.

Use a text editor to open the file navigation.html in the
/usr/lpp/NetCommerce3/html/en_US/cspsite/ directory.

In order to change the Create Store link, comment out the link to the
create_store.html file by placing HTML comment tags around this section:

<!-- create store -->

<!-- <TR>

<TD><IMG NAME="item6" SRC="/CHS/images/bullet_blank.gif" WIDTH=5

HEIGHT=5 ALT="" BORDER=0></TD>

<TD NOWRAP> <A

HREF="javascript:go(6,’/cspsite/create_store_banner.html’,’/cspsite/cre

ate_store.html’)" onMouseOver="on(6); status=’create store’; return

true;" onMouseOut="off(6); status=’’;">create store</TD>

</TR>

<TR>

<TD></TD>

<TD><IMG SRC="/CHS/images/separator.gif" WIDTH=122 HEIGHT=1 ALT=""

BORDER=0></TD>

</TR> -->

Replace this commented out section with a new, similar section containing
a link to the creation_access.d2w macro:

<TR>

<TD><IMG NAME="item6" SRC="/CHS/images/bullet_blank.gif" WIDTH=5

HEIGHT=5 ALT="" BORDER=0></TD>

<TD NOWRAP> <A HREF="javascript:go(6,

’/cspsite/create_store_banner.html’,

’/cgi-bin/ncommerce3/ExecMacro/ncadmin/sitemgr/creation_access.d2w/repo

rt?merfnb=$env.merchant_id$’)" onMouseOver="on(6); status=’create

store’; return true;" onMouseOut="off(6); status=’’;">create

store</TD>
96 Exploring Net.Commerce Hosting Server

</TR>

<TR>

<TD></TD>

<TD><IMG SRC="/CHS/images/separator.gif" WIDTH=122 HEIGHT=1 ALT=""

BORDER=0></TD>

</TR>

Save the navigation.html file and exit. Figure 41 shows the new screen
that will appear when a merchant clicks Create Store.

Figure 41. New store creation access screen.

4. Modify the ord_ok.d2w macro to enable store creation after access has
been purchased.

The ord_ok.d2w macro displays the order confirmation screen. When
store creation access has been purchased, the shfield2 field in the
shopper table should be set to 1 to indicate that the prospective merchant
NCHS advanced customization 97

has purchased access and can therefore be granted access to store
creation.

This update can be performed by checking the list of products purchased
in the product list and if any of those products is the store creation access
product, the shfield2 field is set to 1 indicating access has been
purchased. After this update to the database has been performed, a link to
the store creation command will be displayed so that the merchant can
then create their store. This link is only available when store creation
access has been purchased and is only active for that particular session.
This prevents a registered merchant from returning to the cspsite and
creating additional stores.

To add this functionality to the ord_ok.d2w macro, open this file which is
located in the /usr/lpp/NetCommerce3/macro/en_US/<ref num>/ directory,
(where <ref num> is the reference number of the CHS Services Store
obtained in Step 1).

In this file, make the following changes which appear in boldface, (replace
all <ref num> occurrences with the CHS Services Store reference number).

%include "<ref num>/include.inc"

%include "<ref num>/new_ord_ok.d2w"

Save this file and exit. The changes made to the ord_ok.d2w macro
instruct Net.Commerce to include a new macro called new_ord_ok.d2w.
This macro will be very similar to the existing ord_ok.d2w macro in the
/usr/lpp/NetCommerce3/macro/common/CSPstoremodel/ directory except
for the addition of the logic to update the database with a flag to grant
store creation access.

In order to create this new macro, make a copy of the ord_ok.d2w macro
in the /usr/lpp/NetCommerce3/macro/common/CSPstoremodel/ directory
and name this copy new_ord_ok.d2w. Move this new copy to the
/usr/lpp/NetCommerce3/macro/en_US/<ref num>/ directory, (where <ref
num> is the reference number of the CHS Services Store). Open the
new_ord_ok.d2w macro file in a text editor and make the following
additions/changes which appear in boldface. Insert the product SKU
number obtained in Step 1 where instructed.

%{==

The sample Templates, HTML and Macros are furnished by IBM as simple

examples to provide an illustration. These examples have not been
98 Exploring Net.Commerce Hosting Server

thoroughly tested under all conditions. IBM, therefore, cannot

guarantee reliability, serviceability or function of these programs. All

programs contained herein are provided to you "AS IS".

The sample Templates, HTML and Macros may include the names of

individuals, companies, brands and products in order to illustrate them

as completely as possible. All of these are names are fictitious and

any similarity to the names and addresses used by actual persons or

business enterprises is entirely coincidental.

Licensed Materials - Property of IBM 5697-D24 (c) Copyright IBM Corp.

1998, 1999. All Rights Reserved US Government Users Restricted

Rights - Use, duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM Corp

==%}

%INCLUDE "/CSPstoremodel/translation_text.inc"

%INCLUDE "/CSPstoremodel/format_pricedefinition.inc"

%INCLUDE "$(DirectoryName)/navbar.inc"

%define {

SHOWSQL="NO"

CreationFlag="False"

%}

%INCLUDE "ord_taxshiprules.inc"

%function(dtw_odbc) UPDATE_CREATION_ACCESS(){

UPDATEshopper

SET shfield2 = ’1’

WHERE shlogid = ’$(SESSION_ID)’

%}

%function(dtw_odbc) GET_ORBILLTO (){

SELECT orbllto

FROM orders

WHERE orrfnbr = $(order_rn)

%REPORT {

%ROW {

@dtw_assign(BILLING_ADDRESS_RN, V_orbllto)

%}

%}
NCHS advanced customization 99

%MESSAGE{

100: { %} :CONTINUE

default: { ERROR in GET_ORBLLTO %}

%}

%}

%function(dtw_odbc) IS_SET ()

{

SELECT ompaymthd, setsstatcode, setsfailtype

FROM ordpaymthd, setstatus, orders

WHERE omornbr = $(order_rn) and setsornbr = $(order_rn) and orrfnbr =

setsornbr and orshnbr = $(SESSION_RN)

%REPORT {

<CENTER>

<TABLE width=530 CELLPADDING=4 CELLSPACING=0 BORDER=0 ALIGN="center">

<TR>

<TD ALIGN="left" VALIGN="center">

%ROW {

@dtw_assign(BILLING_ADDRESS_RN, V_orbllto)

@dtw_assign(PAYMENT_METHOD, V_ompaymthd)

$(TXT_THANKYOU)

%INCLUDE "ord_set_returncodes.inc"

%}

</TD>

</TR>

</TABLE>

%}

%MESSAGE{

100: { %} :CONTINUE

default: { ERROR in IS_SET %}

%}

%}

%function(dtw_odbc) GET_SHOPPER_TYPE() {

select shshtyp

from shopper

where shrfnbr = $(SESSION_RN)

%REPORT{
100 Exploring Net.Commerce Hosting Server

%ROW{

 @DTW_assign(SHOPPER_TYPE, V_shshtyp)

%}

%}

%MESSAGE{

default: { ERROR in GET_SHOPPER_TYPE %}

%}

%}

%function(dtw_odbc) SHOPPER_INFO() {

select sarfnbr, salname, safname, saaddr1, saaddr2, sacity, sastate,

sazipc, sacntry

from shaddr

where sashnbr=$(SESSION_RN) and sarfnbr=$(BILLING_ADDRESS_RN)

%REPORT{

<CENTER>

<TABLE width=530 CELLSPACING=0 CELLPADDING=4 BORDER=0 ALIGN="center">

%ROW{

%IF (($(PAYMENT_METHOD) != "SET") && ($(PAYMENT_METHOD) != "SETNV")

<TR>

<TD COLSPAN=3>

$(TXT_THANKYOU)

 </TD>

 </TR>

 <TR>

<TD COLSPAN=3>

$(CONF_MSG)

</TD>

</TR>

%ENDIF

<TR><TD>

</TD></TR>

<TR>

 <TD COLSPAN=3 ALIGN="center" bgcolor="#E0E0E0">

$(LBL_ORDERNUMBER) : $(order_rn)

%IF (SHOPPER_TYPE == "G")Z---

$(LBL_CUSTOMERCODE) : $(SESSION_ID)
NCHS advanced customization 101

%ENDIF

</TD>

</TR>

<TR><TD>
</TD></TR>

 <TR>

<TD>

$(TXT_MAILTO)

</TD>

<TD width=10></TD>

<TD>

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(TXT_MAILSHIPTO)</FO

NT>

</TD>

</TR>

 <TR>

<TD BGCOLOR=white width=260 VALIGN=top>

%INCLUDE "/CSPstoremodel/address_static.inc"

</TD>

<TD width=10></TD>

%}

%}

%MESSAGE{default: { ERROR in SHOPPER_INFO %} :CONTINUE

%}

%}

%function(dtw_odbc) SHOPPER_SHIPTO_INFO() {

select salname, safname, saaddr1, saaddr2, sacity, sastate, sazipc,

sacntry

from shaddr, shipto

where stornbr=$(order_rn) and stsanbr=sarfnbr

%REPORT{

<TD BGCOLOR=white width=260 VALIGN=top>

%INCLUDE "/CSPstoremodel/address_static.inc"

102 Exploring Net.Commerce Hosting Server

</TD>

</TR>

</TABLE>

</CENTER>

%}

%MESSAGE{default: { ERROR in SHOPPER_SHIPTO_INFO %}

%}

%}

%function(dtw_odbc) DISPLAY_DETAILS_LIST() {

select strfnbr, stsanbr, stshnbr, stmenbr, stprnbr, stprice, stquant,

stcpcur,

prrfnbr, prnbr, prldesc2, prsdesc, salname, safname

from shipto, product, shaddr

wherestshnbr=$(SESSION_RN) and stmenbr=$(MerchantRefNum) and

stprnbr=prrfnbr and stornbr=$(order_rn)

and stsanbr=sarfnbr

order by stmenbr, stsanbr, strfnbr

%REPORT{

<CENTER>

<TABLE width=530 CELLPADDING=4 CELLSPACING=0 BORDER=0 ALIGN="center">

<TR>

 <TD ALIGN=left VALIGN=top><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_PRODUCTNUM)

</TD>

<TD ALIGN=left VALIGN=top><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_PRODUCTNAME)</TD>

<TD ALIGN=middle VALIGN=top><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_QUANTITY)</

TD>

 <TD ALIGN=right VALIGN=top><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_PRODUCTPRICE)

%IF (CurDescription != null)

[$(CurDescription)]

%ENDIF

</TD>

<TD ALIGN=right VALIGN=top><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_SUBTOTAL)

%IF (CurDescription != null)

[$(CurDescription)]
NCHS advanced customization 103

%ENDIF

</TD>

</TR>

<TR><TD colspan=5><HR></TD></TR

%ROW{

<TR>

@DTW_FORMAT(V_stprice, "", CurDecimalPlaces, FORMATTEDPRODPRICE)

@DTW_MULTIPLY(V_stquant, V_stprice, SUB_TOT)

@DTW_FORMAT(SUB_TOT, "", CurDecimalPlaces, FORMATTEDSUBTOTPRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDSUBTOTPRICE)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDSUBTOTPRICE,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDPRODPRICE)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDPRODPRICE,OUT_PRICE)

%if ($(V_prnbr) == "**insert product SKU number here**")

@DTW_ASSIGN(CreationFlag, "True")

%endif

 <TD ALIGN=left><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(V_prldesc2) - </TD>

<TD ALIGN=left>

$(V_prsdesc)</TD>

<TD ALIGN=middle>

$(V_stquant)</TD>

 <TD ALIGN=right><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDPRODP

RICE)$(CurPostfix)

%IF (CurDescription == null)

$(V_stcpcur)

%ENDIF

</TD>

 <TD ALIGN=right ALIGN="right"><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSU

BTOTPRICE)$(CurPostfix)

%IF (CurDescription == null)

$(V_stcpcur)

%ENDIF

</TD>

</TR>

<TR><TD HEIGHT=5></TD></TR>
104 Exploring Net.Commerce Hosting Server

%}

<TR><TD colspan=5><HR></TD></TR>

%}

%MESSAGE{

100 : {
<FONT

SIZE=3>$(MSG_ORDERLIST_EMPTY)%}:continue

default: {ERROR : Problem with DISPLAY_DETAILS_LIST function %}

%}

%}

%function(dtw_odbc) DISPLAY_CHARGES_MerchantTax() {

select distinct orprtot, ortxtot, orshtot, orshtxtot, orcpcur,

(oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as mttax

from orders, orderpay, shaddr

whereormenbr=$(MerchantRefNum) and oysanbr=sarfnbr and

orrfnbr=$(order_rn) and oyornbr=$(order_rn)

%REPORT{

%ROW{

@DTW_FORMAT(V_orprtot, "", CurDecimalPlaces, FORMATTEDSUBTOTPRICE)

@DTW_FORMAT(V_ortxtot, "", CurDecimalPlaces, FORMATTEDTAXTOT)

@DTW_FORMAT(V_orshtot, "", CurDecimalPlaces, FORMATTEDSHIPTOT)

@DTW_FORMAT(V_orshtxtot, "", CurDecimalPlaces, FORMATTEDSHIPTAXTOT)

@DTW_ADD(V_orprtot, V_ortxtot, total)

@DTW_ADD(total, V_orshtot, total)

@DTW_ADD(total, V_orshtxtot, total)

@DTW_FORMAT(total, "", CurDecimalPlaces, FORMATTEDTOTPRICE)

%IF (ConvMultOrDiv == "M")

@DTW_MULTIPLY(FORMATTEDTOTPRICE, ConvFactor, CONVPRICE)

@DTW_FORMAT(CONVPRICE, "", ConvCurDecimalPlaces, CONVFORMATTEDPRICE)

%ELIF (ConvMultOrDiv == "D")

@DTW_DIVIDE(FORMATTEDTOTPRICE, ConvFactor, CONVPRICE)

@DTW_FORMAT(CONVPRICE, "", ConvCurDecimalPlaces, CONVFORMATTEDPRICE)

%ENDIF

@DTW_ASSIGN(IN_PRICE,FORMATTEDSUBTOTPRICE)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDSUBTOTPRICE,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDTAXTOT)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDTAXTOT,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDSHIPTOT)

%INCLUDE "/CSPstoremodel/format_price.inc"
NCHS advanced customization 105

@DTW_ASSIGN(FORMATTEDSHIPTOT,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDSHIPTAXTOT)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDSHIPTAXTOT,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDTOTPRICE)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDTOTPRICE,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,CONVFORMATTEDPRICE)

%INCLUDE "/CSPstoremodel/format_convprice.inc"

@DTW_ASSIGN(CONVFORMATTEDPRICE,OUT_PRICE)

<TR>

<TD ALIGN="right" COLSPAN=4><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_SUBTOTAL)

</TD>

 <TD ALIGN="right"><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSUBTO

TPRICE)$(CurPostfix)

%IF (CurDescription == null)

$(V_orcpcur)

%ENDIF

</TD>

</TR>

<TR>

<TD ALIGN="right" COLSPAN=4><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_TAX)

</TD>

 <TD ALIGN="right">

%IF (TAXRULE_EXISTS == "YES" && CurDescription == null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDTAXTO

T)$(CurPostfix) $(V_orcpcur)

%ELIF (TAXRULE_EXISTS == "YES" && CurDescription != null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDTAXTO

T)$(CurPostfix)

%ELSE

%ENDIF

</TD>

</TR>

<TR>

<TD ALIGN="right" COLSPAN=4><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_SHIPPING)
106 Exploring Net.Commerce Hosting Server

</TD>

 <TD ALIGN="right">

%IF (SHIPRULE_EXISTS == "YES" && CurDescription == null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSHIPT

OT)$(CurPostfix) $(V_orcpcur)

%ELIF (SHIPRULE_EXISTS == "YES" && CurDescription != null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSHIPT

OT)$(CurPostfix)

%ELSE

%ENDIF

</TD>

</TR>

<TR>

<TD ALIGN="right" COLSPAN=4><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_SHIPPINGTAX)

</TD>

 <TD ALIGN="right">

%IF (SHIPRULE_EXISTS == "YES" && CurDescription == null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSHIPT

AXTOT)$(CurPostfix) $(V_orcpcur)

%ELIF (SHIPRULE_EXISTS == "YES" && CurDescription != null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSHIPT

AXTOT)$(CurPostfix)

%ELSE

%ENDIF

</TD>

</TR>

<TR>

<TD ALIGN="right" COLSPAN=4><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_TOTAL)

</TD>

 <TD ALIGN="right" BGCOLOR="white"><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDTO

TPRICE)$(CurPostfix)

%IF (CurDescription == null)

$(V_orcpcur)

%ENDIF
NCHS advanced customization 107

</TD>

</TR>

<TR><TD HEIGHT=5></TD></TR>

<TR><TD>
</TD></TR>

<TR BGCOLOR="#E0E0E0">

<TD COLSPAN=5 ALIGN=center>

$(TXT_YOUCHARGED)

%IF (ConvMultOrDiv == "")

$(CurPrefix)$(FORMATTEDTOTPRICE)$(CurPostfix) $(V_orcpcur)

%ELSE

$(CurPrefix)$(FORMATTEDTOTPRICE)$(CurPostfix) $(CurDescription)

[$(ConvCurPrefix)$(CONVFORMATTEDPRICE)$(ConvCurPostfix)

$(ConvCurDescription)]

%ENDIF

</TD>

</TR>

%}

 </TABLE>

 </CENTER>

%}

%MESSAGE{

100: { No Information Available. %} : continue

 default: { ERROR in DISPLAY_CHARGES_MerchantTax() %}:CONTINUE

%}

%}

%function(dtw_odbc) GET_CONF_MESSAGE() {

SELECT omornbr,ompaymthd,ompaydevc,pmentinst2,pmentinst4

FROM ordpaymthd,merpayinfo

WHERE paymerid=$(MerchantRefNum) and omornbr=$(order_rn)

%REPORT {

%ROW {

%if (V_ompaydevc == "OFF-LINE")

@DTW_assign(CONF_MSG, V_pmentinst2)

%else

@DTW_assign(CONF_MSG, V_pmentinst4)

%endif

%}

%}
108 Exploring Net.Commerce Hosting Server

%MESSAGE{

default: {error occurred in

GET_CONF_MESSAGE()%}:CONTINUE

%}

%}

%{==%}

%{ HTML Report Section

%{==%}

%HTML_REPORT{

<HTML>

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT"></HEAD>

<TITLE>$(LongStoreName) [$(TXT_TITLE_ORDEROK)]</TITLE>

<BODY BACKGROUND="$(BodyImage)" BGCOLOR="$(BodyColor)"

TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"

ALINK="$(ALinkCol)">

%IF (CurDecimalPlaces == "")

@DTW_assign(CurDecimalPlaces, "2")

%ENDIF

%INCLUDE "/CSPstoremodel/assign_priceseparators.inc"

<CENTER>

<TABLE width=530 CELLPADDING=4 CELLSPACING=0 BORDER=0 ALIGN="center">

<TR>

<TD ALIGN="center" VALIGN="center">

<FONT

COLOR=$(TextCol)><H$(DONOTTRANSLATE_FORMAT_FONTSIZETITLE)>$(TXT_TITLE_O

RDEROK)</H$(DONOTTRANSLATE_FORMAT_FONTSIZETITLE)>

</TD>

</TR>

</TABLE>

</CENTER>

@IS_SET()

%IF (($(PAYMENT_METHOD) == "SET") ||($(PAYMENT_METHOD) == "SETNV"))

@SET_TAXRULE_FLAG()

@SET_SHIPRULE_FLAG()

%ELSE

@GET_CONF_MESSAGE()

%ENDIF

@GET_SHOPPER_TYPE()

@GET_ORBILLTO()

@SHOPPER_INFO()
NCHS advanced customization 109

@SHOPPER_SHIPTO_INFO()

@DISPLAY_DETAILS_LIST()

@DISPLAY_CHARGES_MerchantTax()

%if (CreationFlag == "True")

@UPDATE_CREATION_ACCESS()

<center><a

href="/cgi-bin/ncommerce3/ExecMacro/ncadmin/sitemgr/creation_access.d2w

/report?merfnb=$env.merchant_id$">Click here to create your on-line

store!</center>

%endif

@DISPLAY_CUSTOM_NAVBAR()

</body>

</html>

%}

Save this file and exit. Make sure the file permissions are set correctly by
issuing the following commands, (replace <ref num> with the store
reference number):

> cd /usr/lpp/NetCommerce3/macro/en_US/<ref num>/

> chmod 644 new_ord_ok.d2w

This new macro will update the database with a flag granting store
creation access if it has been purchased.

5. Stop and restart the Net.Commerce instance, administrator server and
webserver as directed in "Installing and Getting Started Guide",
GC09-2808-01.
110 Exploring Net.Commerce Hosting Server

Appendix A. Net.Data macro for the category items page

This appendix contains customized version of the csp_cat.d2w macro file
found in /usr/lpp/NetCommerce3/macro/en_US/category/CSPstoremodel
directory. It is used to customize default shopping flow.

csp_cat.d2w

%{==

The sample Templates, HTML and Macros are furnished by IBM as simple
examples to provide an illustration. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee reliability,
serviceability or function of these programs. All programs contained herein are provided
to you "AS IS".

The sample Templates, HTML and Macros may include the names of individuals,
companies, brands and products in order to illustrate them as completely as
possible. All of these are names are ficticious and any similarity to the names
and addresses used by actual persons or business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D24

(c) Copyright IBM Corp. 1998. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp

==%}

%INCLUDE "/CSPstoremodel/translation_text.inc"

%define {
 SHOWSQL="NO"
ATTRIBUTES = "FALSE"
BACKUP = "$(HomeCategory)"
%}

%function(dtw_odbc) GET_ADDRESS_REF_NUM() {
 select sarfnbr
 from shaddr, shopper
 where (shlogid=’$(SESSION_ID)’ and sanick=shlogid and shrfnbr=sashnbr and
saadrflg=’P’)
 %REPORT{
 %ROW{
 @DTW_assign(ADDRESS_REF, V_sarfnbr)
 %}
 %}
 %MESSAGE{
 default: {%}: continue
 %}
%}

%function(dtw_odbc) GET_CATEGORY_BANNERINFO(){
 select distinct cgname, cgrfnbr
 from CATEGORY
 where cgrfnbr=$(cgrfnbr) and cgmenbr=$(cgmenbr)
© Copyright IBM Corp. 1999 111

%REPORT{

 %ROW{
@DTW_assign(CGRYNUM, V_CGRFNBR)
@DTW_assign(CGRYBANNERNAME, V_cgname)
 %}

 %}
 %MESSAGE{100:{erro %} :continue %}
%}

%{==== DISPLAY_CATEGORIES Function ====%}

%function(dtw_odbc) DISPLAY_CATEGORIES(){
 select CATEGORY.CGRFNBR, CATEGORY.CGMENBR, CATEGORY.CGNAME, CATEGORY.CGTHMB,
CGRYREL.CRSEQNBR, CATEGORY.CGLDESC, CGRYREL.CRPCGNBR
 from CATEGORY, CGRYREL
 where CRCCGNBR=CGRFNBR and crpcgnbr=$(cgrfnbr) and crmenbr=$(cgmenbr) and cgpub=1
 order by crseqnbr

%REPORT{

<CENTER>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=2 WIDTH=530>
 <TR><TD><H3>$(TXT_CATALOGINDEX)</H3></TD></TR>

%ROW{

<TR>
<TD ALIGN="left" VALIGN="top" WIDTH=75>

<A
HREF="/cgi-bin/ncommerce3/CategoryDisplay?cgrfnbr=$(V_CGRFNBR)&cgmenbr=$(V_CGMENBR)&CGRY
_NUM=$(CGRYNUM)">
$(V_cgname)

</TD>
</TR>

<TR><TD HEIGHT=5></TD></TR>

 %}

</TABLE>
<CENTER>

 %}
 %MESSAGE{100:{%} :continue %}
%}

%function(dtw_odbc) DISPLAY_PRODUCT_LIST() {

 select PRODUCT.PRRFNBR, PRODUCT.PRMENBR, PRODUCT.PRFULL, PRODUCT.PRNBR, PRSDESC,
PRTHMB, PRLDESC1,
CGPRREL.CPSEQNBR, CGPRREL.CPCGNBR,
FULLWD, FULLHT, FULLAL, FULLTXT,
 PPPRC, PANAME, PAVAL
112 Exploring Net.Commerce Hosting Server

 from PRODUCT, CGPRREL, PRODIMAGE, PRODPRCS, PRODATR
 where CPPRNBR=PRRFNBR and cpcgnbr=$(cgrfnbr) and cpmenbr=$(cgmenbr) and prpub=1
and merchant_rn=$(MerchantRefNum) and product_rn=prrfnbr
 and ppmenbr=merchant_rn and cpmenbr=ppmenbr
 and ppprnbr=prrfnbr
 and prmenbr=ppmenbr and prmenbr=pamenbr and paprnbr=prrfnbr
 order by cpseqnbr, prrfnbr, cpseqnbr

%REPORT{

<CENTER>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=530>

<TR><TD><H3>$(TXT_CATEGORYITEMS)</H3></TD></TR>

@DTW_assign(pre_rrfnbr, "null")
@DTW_assign(firstTime, "true")

%ROW{

@DTW_assign(firstRrfnbr, V_PRRFNBR)

<TR>
<TD ALIGN="left" VALIGN="top" WIDTH=180>

%IF (pre_rrfnbr != "null" && V_prrfnbr != prr_no)

<!--// delete "Order" button //-->
<!--<FORM ACTION="/cgi-bin/ncommerce3/ProductDisplay" METHOD="post">
<INPUT TYPE=hidden NAME="prmenbr" VALUE="$(MerchantRefNum)">
<INPUT TYPE=hidden NAME="prrfnbr" VALUE="$(pre_rrfnbr)">
<INPUT TYPE=hidden NAME=product_rn VALUE=$(pre_rrfnbr)>
<INPUT TYPE=SUBMIT VALUE="$(BUT_ORDER)">
</FORM> -->

<!--// inserted for "Quick order" button //-->

<FORM NAME="process" ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" Method=get>
<INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>

 <INPUT TYPE=hidden NAME=product_rn VALUE=$(pre_rrfnbr)>
 <INPUT TYPE=hidden NAME=quantity VALUE=1>
 <INPUT TYPE=hidden NAME=url
VALUE=/cgi-bin/ncommerce3/OrderItemList?merchant_rn=$(MerchantRefNum)>

 <TEXTAREA NAME="comment" ROWS="4" COLS="60"></TEXTAREA>

<INPUT TYPE=SUBMIT VALUE="Quick Order">
 </FORM>
<!--// end of insertion //-->

<CENTER>$(HorizontalSep)</CENTER>
%ENDIF

%IF (V_prrfnbr != prr_no)

<!--A
HREF="/cgi-bin/ncommerce3/ProductDisplay?prrfnbr=$(V_PRRFNBR)&prmenbr=$(V_PRMENBR)&CGRY_
NUM=$(CGRYNUM)"-->
$(V_PRSDESC)
%ENDIF
</TD>
Net.Data macro for the category items page 113

</TR>
<TR>
<TD>
%IF (V_fullal == "0" && V_prfull != "" && V_prrfnbr != prr_no && pre_rrfnbr == "null" &&
firstTime== "true")
@DTW_assign(firstTime, "false")
<TABLE WIDTH=530 BORDER=0 CELLSPACING=0 CELLPADDING=0>
<TR>
<TD>
<FORM ACTION="/cgi-bin/ncommerce3/ProductDisplay" METHOD="get">
<INPUT TYPE=hidden NAME="prmenbr" VALUE="$(MerchantRefNum)">
<INPUT TYPE=hidden NAME="prrfnbr" VALUE="$(firstRrfnbr)">
<INPUT TYPE=hidden NAME=product_rn VALUE=$(pre_rrfnbr)>
<INPUT TYPE=image SRC="$(V_PRFULL)" BORDER=0 WIDTH=$(V_fullwd) HEIGHT=$(V_fullht)
ALT="$(V_fulltxt)" HSPACE=0>
</FORM>

</TD>
<TD>
$(V_PRLDESC1)
</TD>
</TR>

</TABLE>

%ELIF (V_fullal == "0" && V_prfull != "" && V_prrfnbr != prr_no && pre_rrfnbr != "null")

<TABLE WIDTH=530 BORDER=0 CELLSPACING=0 CELLPADDING=0>
<TR>
<TD>
<FORM ACTION="/cgi-bin/ncommerce3/ProductDisplay" METHOD="get">
<INPUT TYPE=hidden NAME="prmenbr" VALUE="$(MerchantRefNum)">
<INPUT TYPE=hidden NAME="prrfnbr" VALUE="$(V_prrfnbr)">
<INPUT TYPE=hidden NAME=product_rn VALUE=$(pre_rrfnbr)>
<INPUT TYPE=image SRC="$(V_PRFULL)" BORDER=0 WIDTH=$(V_fullwd) HEIGHT=$(V_fullht)
ALT="$(V_fulltxt)" HSPACE=0>
</FORM>
</TD>
<TD>
$(V_PRLDESC1)
</TD>
</TR>
</TABLE>

%ELIF (V_fullal == "1" && V_prfull != "" && V_prrfnbr != prr_no)

<TABLE WIDTH=530 BORDER=0 CELLSPACING=0 CELLPADDING=0>
<TR>
<TD>
$(V_PRLDESC1)
</TD>
<TD>
<IMG SRC="$(V_PRFULL)" BORDER=0 WIDTH=$(V_fullwd) HEIGHT=$(V_fullht) ALT="$(V_fulltxt)"
HSPACE=0>
</TD>

</TR>
</TABLE>

%ELIF (V_fullal == "2" && V_prfull != "" && V_prrfnbr != prr_no)

<TABLE WIDTH=530 BORDER=0 CELLSPACING=0 CELLPADDING=0>
<TR>
114 Exploring Net.Commerce Hosting Server

<TD>
<CENTER>
<IMG SRC="$(V_PRFULL)" BORDER=0 WIDTH=$(V_fullwd) HEIGHT=$(V_fullht) ALT="$(V_fulltxt)"
HSPACE=0>
</CENTER>
</TD>
</TR>
<TR>
<TD>
$(V_PRLDESC1)
</TD>
</TR>
</TABLE>

%ELIF (V_fullal == "3" && V_prfull != "" && V_prrfnbr != prr_no)

<TABLE WIDTH=530 BORDER=0 CELLSPACING=0 CELLPADDING=0>
<TR>
<TD>
$(V_PRLDESC1)
</TD>
</TR>
<TR>
<TD>
<CENTER>
<IMG SRC="$(V_PRFULL)" BORDER=0 WIDTH=$(V_fullwd) HEIGHT=$(V_fullht) ALT="$(V_fulltxt)"
HSPACE=0>
</CENTER>
</TD>
</TR>
</TABLE>

%ELIF (V_prrfnbr != prr_no)

<TABLE WIDTH=530 BORDER=0 CELLSPACING=0 CELLPADDING=0>
<TR>
<TD>
$(V_PRLDESC1)
</TD>
</TR>
</TABLE>

%ELSE
%ENDIF

%IF (V_prrfnbr != prr_no)
@DTW_assign(prr_no, V_prrfnbr)

<I>Price:</I> $(V_PPPRC)

%ENDIF

%IF (V_prrfnbr != prr_no && $(V_PANAME) != "dummy" && $(V_PAVAL) != "")
<I>$(V_PANAME):</I> $(V_PAVAL)

%ELIF (V_prrfnbr == prr_no && $(V_PANAME) != "dummy" && $(V_PAVAL) != "")
<I>$(V_PANAME):</I> $(V_PAVAL)

%ENDIF

@DTW_assign(pre_rrfnbr, V_prrfnbr)

%IF (V_prrfnbr != prr_no)

<!--// delete "Order" button //-->
<!--<FORM ACTION="/cgi-bin/ncommerce3/ProductDisplay" METHOD="get">
Net.Data macro for the category items page 115

<INPUT TYPE=hidden NAME="prmenbr" VALUE="$(MerchantRefNum)">
<INPUT TYPE=hidden NAME="prrfnbr" VALUE="$(V_prrfnbr)">
<INPUT TYPE=hidden NAME=product_rn VALUE=$(V_prrfnbr)>
<INPUT TYPE=SUBMIT VALUE="$(BUT_ORDER)">
</FORM> -->

<!--// inserted for "Quick order" button //-->

<FORM NAME="process" ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" Method=get>
 <INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>

 <INPUT TYPE=hidden NAME=product_rn VALUE=$(pre_rrfnbr)>
 <INPUT TYPE=hidden NAME=quantity VALUE=1>
 <INPUT TYPE=hidden NAME=url
VALUE=/cgi-bin/ncommerce3/OrderItemList?merchant_rn=$(MerchatRefNum)>

 <TEXTAREA NAME="comment" ROWS="4" COLS="60"></TEXTAREA>

 <INPUT TYPE=SUBMIT VALUE="Quick Order">
 </FORM>
<!--// end of insertion //-->

<CENTER>$(HorizontalSep)</CENTER>
%ENDIF

</TD>
</TR>
%}

<TR>
<TD>

<!--// delete "Order" button //-->
<!--<FORM ACTION="/cgi-bin/ncommerce3/ProductDisplay" METHOD="get">
<INPUT TYPE=hidden NAME="prmenbr" VALUE="$(MerchantRefNum)">
<INPUT TYPE=hidden NAME="prrfnbr" VALUE="$(pre_rrfnbr)">
<INPUT TYPE=hidden NAME=product_rn VALUE=$(pre_rrfnbr)>
<INPUT TYPE=SUBMIT VALUE="$(BUT_ORDER)">
</FORM> -->

<!--// inserted for "Quick order" button //-->

<FORM NAME="process" ACTION="/cgi-bin/ncommerce3/OrderItemUpdate" Method=get>
 <INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>

 <INPUT TYPE=hidden NAME=product_rn VALUE=$(pre_rrfnbr)>
 <INPUT TYPE=hidden NAME=quantity VALUE=1>
 <INPUT TYPE=hidden NAME=url
VALUE=/cgi-bin/ncommerce3/OrderItemList?merchant_rn=$(MerchantRefNum)>

 <TEXTAREA NAME="comment" ROWS="4" COLS="60"></TEXTAREA>

 <INPUT TYPE=SUBMIT VALUE="Quick Order">
 </FORM>
<!--// end of insertion //-->

<CENTER>$(HorizontalSep)</CENTER>
</TD>
</TR>

</TABLE>
116 Exploring Net.Commerce Hosting Server

</CENTER>

%}

 %MESSAGE{100:{%} :continue %}
%}

%{==%}
%{ HTML Report Section
%{==%}

%HTML_REPORT{

<HTML>

<HEAD>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
<TITLE>$(LongStoreName)</TITLE>
</HEAD>

<BODY BACKGROUND="$(BodyImage)" BGCOLOR="$(BodyColor)" TEXT="$(TextCol)"
LINK="$(LinkCol)" VLINK="$(VLinkCol)" ALINK="$(ALinkCol)">

@GET_CATEGORY_BANNERINFO()

<CENTER>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=530>

<TR>
<TD ALIGN="center">
<h2>$(CGRYBANNERNAME)</H2>
<HR>

</TD>
</TR>

</TABLE>
</CENTER>

@GET_ADDRESS_REF_NUM()

<CENTER>
<TABLE WIDTH=530 CELLPADDING=0 CELLSPACING=0 BORDER=0>

 <TR><TD>@DISPLAY_CATEGORIES()</TD></TR>

 <TR><TD>@DISPLAY_PRODUCT_LIST()</TD></TR>

</TABLE>
</CENTER>

%INCLUDE "/CSPstoremodel/navbar.inc"

</BODY>
</HTML>

%}
Net.Data macro for the category items page 117

118 Exploring Net.Commerce Hosting Server

Appendix B. Net.Data macros for the merchant tool

This appendix contains two Net.Data macros. They are used to create a new
feature in the merchant tool.

gftmsg.d2w

%{==

(C) Copyright IBM Corp. 1999

===%}

%define {
 merfnbrVal=merfnbr?"$(merfnbr)":"0"

 giftMessage="0"
 PreGiftText=""

 whereClause = SESSION_ID?",acc_usrgrp,acc_group,shopper where shlogid=’$(SESSION_ID)’
and usr_refnum=shrfnbr and refnum=grpu_refnum and mer_rfnbr=merfnbr group by
merfnbr,mestname" : " "

 SHOWSQL="no"
%}

%function(dtw_odbc) checkAccess() {
select shlogid from shopper, acc_usrgrp where shrfnbr = usr_refnum and
mer_rfnbr=$(merfnbrVal) and shlogid = ’$(SESSION_ID)’

%REPORT{
%}
%MESSAGE{
100:{
<h2>You are not authorized to access the site.</h2>
%} :exit
%}
%}

%function(DTW_ODBC) StoreName() {
 SELECT DISTINCT merfnbr, mestname
 FROM merchant
 $(whereClause)
 ORDER BY merfnbr, mestname

 %REPORT {
 %ROW{
 @dtw_assign(merfnbrVal,V_merfnbr)
 %}
 %}
%MESSAGE{
100:{ %} :continue
%}
%}

%function(DTW_ODBC) checkGiftMessage() {
 SELECT magftmsg,magfttxt
 FROM maddfeature
 WHERE mamenbr=$(merfnbrVal)
© Copyright IBM Corp. 1999 119

 %REPORT {
 %ROW{
 @dtw_assign(giftMessage,V_magftmsg)
 @dtw_assign(PreGiftText,V_magfttxt)
 %}
 %}
%MESSAGE{
100:{ %} :continue
%}
%}

%HTML_REPORT {

<HTML>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">

<HEAD>
 <TITLE>Gift Message</TITLE>

 <SCRIPT LANGUAGE="JavaScript1.1">
 var ImagePath = "/csp_gif/";
 var ts_mgrPath = "/cs_mgr/";

 %INCLUDE "ncadmin/formdefs.d2w"
 </SCRIPT>
</HEAD>

<BODY BGCOLOR=#FFFFFF>

<FORM NAME="giftmessage" METHOD="post"
ACTION="/cgi-bin/ncommerce3/ExecMacro/ncadmin/storemgr/gftmsg2.d2w/report">

@StoreName()
@checkAccess()
@checkGiftMessage()

<INPUT TYPE="hidden" NAME="merfnbr" VALUE=$(merfnbrVal)>

<TABLE cols=2 width=520>
<TR>
<TD colspan=2><H2>Gift message from shoppers</H2>
<TR>

<TR>
<TD colspan=2>If enabled then shoppers will be able to enter a gift message
with their order. You should only enable this feature if your business model
allows shoppers to put a gift message on an order.
</TD>
</TR>

<TR>
<TD colspan=2>
</TD>
</TR>

<TR>
<TD COLSPAN=2>
 %if($(giftMessage) == "1")
 <INPUT CHECKED TYPE="checkbox" NAME="EnableGiftMessage" VALUE="1">Allow shoppers to
enter a gift message
 %else
120 Exploring Net.Commerce Hosting Server

 <INPUT TYPE="checkbox" NAME="EnableGiftMessage" VALUE="1">Allow shoppers to enter a
gift message
 %endif
</TR>

<TR>
<TD COLSPAN=2>
Gift message instructions to shoppers
 <TEXTAREA WRAP=PHYSICAL NAME="GiftText" ROWS="3" COLS="50">$(PreGiftText)</TEXTAREA>
</TR>
</TABLE>

<INPUT TYPE=submit VALUE="Update">

</FORM>
</BODY>
</HTML>

%}

gftmsg2.d2w

%{==

(C) Copyright IBM Corp. 1999

===%}

%define {
 merfnbrVal=merfnbr?"$(merfnbr)":"0"

 giftMessage="0"

 EnableGiftMessageVal=EnableGiftMessage?"1":"0"

 whereClause = SESSION_ID?",acc_usrgrp,acc_group,shopper where shlogid=’$(SESSION_ID)’
and usr_refnum=shrfnbr and refnum=grpu_refnum and mer_rfnbr=merfnbr group by
merfnbr,mestname" : " "

 SHOWSQL="no"
%}

%function(dtw_odbc) checkAccess() {
select shlogid from shopper, acc_usrgrp where shrfnbr = usr_refnum and
mer_rfnbr=$(merfnbrVal) and shlogid = ’$(SESSION_ID)’

%REPORT{
%}
%MESSAGE{
100:{
<h2>You are not authorized to access the site.</h2>
%} :exit
%}
%}

%function(DTW_ODBC) StoreName() {
 SELECT DISTINCT merfnbr, mestname
 FROM merchant
Net.Data macros for the merchant tool 121

 $(whereClause)
 ORDER BY merfnbr, mestname

 %REPORT {
 %ROW{
 @dtw_assign(merfnbrVal,V_merfnbr)
 %}
 %}
%MESSAGE{
100:{ %} :continue
%}
%}

%function(DTW_ODBC) checkGiftMessage() {
 SELECT magftmsg
 FROM maddfeature
 WHERE mamenbr=$(merfnbrVal)

 %REPORT {
 %ROW{
 @dtw_assign(giftMessage,V_magftmsg)
 %}
 %}
%MESSAGE{
100:{ %} :continue
%}
%}

%function(DTW_ODBC) insertGiftMessage() {
 INSERT INTO maddfeature
 VALUES ($(merfnbrVal), $(EnableGiftMessageVal), ’$(GiftText)’)

 %REPORT {
 %ROW{
 %}
 %}
%MESSAGE{
100:{ %} :continue
%}
%}

%function(DTW_ODBC) updateGiftMessage() {
 UPDATE maddfeature
 SET magftmsg=$(EnableGiftMessageVal), magfttxt=’$(GiftText)’
 WHERE mamenbr=$(merfnbrVal)

 %REPORT {
 %ROW{
 %}
 %}
%MESSAGE{
100:{ @insertGiftMessage() %} :continue
%}
%}

%HTML_REPORT {

<HTML>
<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">

<HEAD>
 <TITLE>Gift Message</TITLE>
122 Exploring Net.Commerce Hosting Server

 <SCRIPT LANGUAGE="JavaScript1.1">
 var ImagePath = "/csp_gif/";
 var ts_mgrPath = "/cs_mgr/";

 %INCLUDE "ncadmin/formdefs.d2w"
 </SCRIPT>
</HEAD>

<BODY BGCOLOR=#FFFFFF>

@StoreName()
@checkAccess()
@updateGiftMessage()
@checkGiftMessage()

<TABLE cols=2 width=520>
<TR>
<TD colspan=2><H2>Gift message from shoppers</H2></TD>
<TR>

<TR>
<TD colspan=2>
</TD>
</TR>

<TR>
<TD colspan=2>
</TD>
</TR>

<TR>
<TD COLSPAN=2>
 %if($(giftMessage) == "1")
 Gift message is enabled for all shoppers with the following instructions:

 $(GiftText)
 %else
 Gift message is disabled for all shoppers.
 %endif
</TD>
</TR>

</TABLE>

</BODY>
</HTML>

%}
Net.Data macros for the merchant tool 123

124 Exploring Net.Commerce Hosting Server

Appendix C. Net.Data macro for the checkout flow

This appendix contains a new version of the ord_pay.d2w macro found in the
directory /usr/lpp/NetCommerce3/macro/en_US/CSPstoremodel. It is
enhanced to support a gift message function.

ord_pay.d2w

%{==

(c) Copyright IBM Corp. 1999. All Rights Reserved

==%}

%INCLUDE "/CSPstoremodel/translation_text.inc"

%define {
 SHOWSQL="NO"
 TOT_TAXRATE="0"
 TAXRULE_EXISTS="NO"
 SHIPRULE_EXISTS="NO"
 CC_ENABLED="NO"
%}

%function(dtw_odbc) GET_GIFTMESSAGE() {
 SELECT magftmsg,magfttxt
 FROM maddfeature
 WHERE mamenbr=$(MerchantRefNum)

 %REPORT {

 %IF (V_magftmsg == "1")

 <TR>
 <TD>
 $(TXT_GIFTMESSAGE):

 $(V_magfttxt)
 </TD>
 </TR>
 <TR>
 <TD>
 <CENTER>
 <TEXTAREA WRAP=PHYSICAL NAME="giftmessage" ROWS="3" COLS="40"></TEXTAREA>
 </CENTER>
 </TD>
 </TR>
 <TR>
 <TD>
 <HR>
 </TD>
 </TR>

 %ENDIF

 %}

 %MESSAGE{
 100:{ %} :continue
 %}
%}
© Copyright IBM Corp. 1999 125

%function(dtw_odbc) GET_CCMESSAGE() {

 SELECT pmentinst3
 FROM merpayinfo
 WHERE paymerid=$(MerchantRefNum)

 %REPORT {

 %ROW {

 @DTW_assign(CC_MESSAGE, V_pmentinst3)

 %}

 %}

 %MESSAGE{
 100:{ %} :continue
 default:{ error%} :continue
 %}

%}

%function(dtw_odbc) GET_OFFLINE() {

 SELECT pofflineen, pmentinst1
 FROM merpayinfo
 WHERE paymerid=$(MerchantRefNum)

 %REPORT {

 %ROW {

 %IF (V_pofflineen == "1" && CC_ENABLED == "YES")

 <TABLE WIDTH=530 CELLPADDING=0 CELLSPACING=0 BORDER=0>
 <TR>
 <TD>
 - OR -
 </TD>
 </TR>

 <TR>
 <TD>

 </TD>
 </TR>

 </TABLE>

 %ENDIF

 %IF (V_pofflineen == "1")

 <TABLE WIDTH=530 CELLPADDING=0 CELLSPACING=0 BORDER=0>
126 Exploring Net.Commerce Hosting Server

 <TR>
 <TD>
 $(V_pmentinst1)
 </TD>
 </TR>

 <TR>
 <TD>

 </TD>
 </TR>

 </TABLE>

 %ENDIF

 %IF (V_pofflineen == "1" && CC_ENABLED == "YES")

 <TABLE WIDTH=500 CELLPADDING=0 CELLSPACING=0 BORDER=0 COLS=8>
 <TR>
 <TD VALIGN="top" COLSPAN=8>
 <input type=radio name=cctype CHECKED VALUE="">$(LBL_PAYOFFLINE)

</TD>
 </TR>

 </TABLE>

 %ENDIF

 %}

 %}

 %MESSAGE{
 100:{ %} :continue
 default:{ Error with GET_OFFLINE() %} :continue
 %}

%}

%function(dtw_odbc) GET_CREDITCARDS() {

 select mccpcard, pmentinst3
 from mccardinfo, merpayinfo
 where mccpmerid=$(MerchantRefNum) and paymerid=$(MerchantRefNum)

 %REPORT {

 @DTW_assign(CC_ENABLED, "YES")

 $(CC_MESSAGE)

 <TABLE WIDTH=530 CELLPADDING=0 CELLSPACING=0 BORDER=0>

 <TABLE WIDTH=200 CELLPADDING=0 CELLSPACING=0 BORDER=0 COLS=8>

 %ROW {

 <TD VALIGN="top"><input type=radio name=cctype value=$(V_mccpcard)></TD>
 <TD VALIGN="top"></TD>
 %}
Net.Data macro for the checkout flow 127

 </TR>
 </TABLE>

 <TABLE WIDTH=400 CELLPADDING=0 CELLSPACING=0 BORDER=0>

 <TR><TD COLSPAN=3>
</TD></TR>
 <TR>
 <TD ALIGN="left">$(LBL_CCNUM)</TD>
 <TD ALIGN="left">$(LBL_CCXMONTH)</TD>
 <TD ALIGN="left">$(LBL_CCXYEAR)</TD>
 </TR>

 <TR>
 <TD ALIGN="left" VALIGN=middle>
 <INPUT TYPE=text SIZE=15 MAXLENGTH=256 NAME="ccnum" VALUE="$(ccnum)">
 </TD>

 <TD ALIGN="left" VALIGN=middle>
 <select name="ccxmonth" size=1>
 <option selected></option>
 <option value="1">January</option>
 <option value="2">February</option>
 <option value="3">March</option>
 <option value="4">April</option>
 <option value="5">May</option>
 <option value="6">June</option>
 <option value="7">July</option>
 <option value="8">August</option>
 <option value="9">September</option>
 <option value="10">October</option>
 <option value="11">November</option>
 <option value="12">December</option>
 </select>
 </td>

 <td align="left" valign=middle>
 <select name="ccxyear" size=1>
 <option selected></option>
 <option value="1998">1998 </option>
 <option value="1999">1999</option>
 <option value="2000">2000</option>
 <option value="2001">2001</option>
 <option value="2002">2002</option>
 <option value="2003">2003</option>
 <option value="2004">2004</option>
 </SELECT>
 </TD>

 </TR>

 <TR>
 <TD COLSPAN=3>
</TD>
 </TR>

 </TABLE>

 %}

 %MESSAGE{
 100:{ %} :continue
 default:{ Error with GET_CREDITCARDS() %} :continue
 %}
128 Exploring Net.Commerce Hosting Server

%}

%function(dtw_odbc) SET_TAXRULE_FLAG() {

 SELECT txrlnbr
 FROM ptaxrule
 WHERE txmenbr=$(MerchantRefNum)

 %REPORT {

 @DTW_assign(TAXRULE_EXISTS, "YES")
 %}

 %MESSAGE{
 100: {%}:CONTINUE
 default: {ERROR in SET_TAXRULE_FLAG() function in ord_pay.d2w. %}:CONTINUE
 %}

%}

%function(dtw_odbc) SET_SHIPRULE_FLAG() {

 SELECT sprlnbr
 FROM pshiprule
 WHERE spmenbr=$(MerchantRefNum)

 %REPORT {

 @DTW_assign(SHIPRULE_EXISTS, "YES")

 %}

 %MESSAGE{
 100: {%}:CONTINUE
 default: {ERROR in SET_SHIPRULE_FLAG() function in ord_pay.d2w. %}:CONTINUE
 %}

%}

%function(dtw_odbc) GET_SHIPPING_INFORMATION() {

 SELECT smcarrid, smspmode
 FROM shipmode, shipto
 WHERE stornbr=$(order_rn) and stsmnbr=smrfnbr

 %REPORT {

 @DTW_CONCAT(V_smcarrid, V_smspmode, SHIPRULE_MESSAGE)

 %}

 %MESSAGE{
 100: { %}:CONTINUE
 default: {ERROR in GET_SHIPPING_INFORMATION() function in ord_pay.d2w. %}:CONTINUE
 %}

%}
Net.Data macro for the checkout flow 129

%function(dtw_odbc) DISPLAY_DETAILS_LIST() {

 select strfnbr, stsanbr, stshnbr, stmenbr, stprnbr, stprice, stquant, stcpcur,
 prrfnbr, prldesc2, prsdesc, salname, safname
 from shipto, product, shaddr
 where stshnbr=$(SHOPPER_REF) and stmenbr=$(MerchantRefNum) and stprnbr=prrfnbr and
stornbr=$(order_rn)
 and stsanbr=sarfnbr
 order by stmenbr, stsanbr, strfnbr

 %REPORT{

 <CENTER>
 <TABLE WIDTH=530 CELLPADDING=0 CELLSPACING=0 BORDER=0 ALIGN="center">

 <TR>
 <TD COLSPAN=3>
 $(TXT_PURCHASELIST)
 </TD>
 </TR>
 </TABLE>
 </CENTER>

 <CENTER>
<TABLE WIDTH=530 CELLPADDING=0 CELLSPACING=0 BORDER=0 ALIGN="center">

 <TR>

 <TD>$(LBL_PRODUCTNUM)</TD>
 <TD>$(LBL_PRODUCTNAME)</TD>
 <TD>$(LBL_QUANTITY)</TD>
 <TD>$(LBL_PRODUCTPRICE)</TD>
 <TD>$(LBL_SUBTOTAL)</TD>

 </TR>

 %ROW{

 <TR>
 @DTW_MULTIPLY(V_stquant, V_stprice, SUB_TOT)

 <TD>$(V_prldesc2)</TD>
 <TD> $(V_prsdesc)</TD>
 <TD> $(V_stquant)</TD>
 <TD>$(CURRENCY) $(V_stprice) $(V_stcpcur)</TD>
 <TD BGCOLOR="white" ALIGN="right">$(CURRENCY) $(SUB_TOT)
$(V_stcpcur)</TD>

 </TR>
 <TR><TD HEIGHT=5></TD></TR>

 %}

 </TABLE>
 </CENTER>

 %}
130 Exploring Net.Commerce Hosting Server

 %MESSAGE{
 100 : {
$(MSG_ORDERLIST_EMPTY)%}:continue
 default: {ERROR : Problem with DISPLAY_DETAILS_LIST function %} :continue
 %}
%}

%function(dtw_odbc) SHOW_TOTAL_PRICE_MerchantTax() {

 SELECT distinct orprtot, ortxtot, orshtot, orshtxtot, orcpcur,
 sarfnbr, safname, salname, saaddr1, saaddr2, sacity, sastate, sacntry, sazipc
 FROM orders, shaddr, shipto
 WHERE ormenbr=$(MerchantRefNum) and orrfnbr=$(order_rn) and stsanbr=sarfnbr and
stornbr=$(order_rn)
 and saadrflg=’P’

 %REPORT{

 <TABLE BORDER=0 CELLSPACING=1 CELLPADDING=1 WIDTH=530 ALIGN="left" COLS=4>

 <TR>
 <TD width=100>
 </TD>
 <TD width=80>
 </TD>
 <TD width=220>
 </TD>

 </TR>

 %ROW {

 @DTW_ADD(V_orprtot, V_ortxtot, total)
 @DTW_ADD(total, V_orshtot, total)
 @DTW_ADD(total, V_orshtxtot, total)

 <TR>
 <TD COLSPAN=4 bgcolor="#E0E0E0">
 $(TXT_ORDERSENTTO)

$(V_safname) $(V_salname) $(V_saaddr1),
 %IF (V_saaddr2 != "")
 $(V_saaddr2),
 %ENDIF
 $(V_sacity), $(V_sastate), $(V_sacntry), $(V_sazipc)

 </TD>
 </TR>

 <TR><TD COLSPAN=3>
</TD></TR>

 <TR>
 <TD ALIGN=right VALIGN=top>
 $(LBL_SUBTOTAL)
 </TD>
 <TD ALIGN=right VALIGN=middle bgcolor="white">
 $(CURRENCY) $(V_orprtot) $(V_orcpcur)
 </TD>
 </TR>
Net.Data macro for the checkout flow 131

 <TR>
 <TD ALIGN=right VALIGN=top>
 $(LBL_TAX)
 </TD>
 <TD ALIGN=right VALIGN=middle BGCOLOR="white">
 %IF (TAXRULE_EXISTS == "YES")
 $(CURRENCY) $(V_ortxtot) $(V_orcpcur)
 %ELSE

 %ENDIF
 </TD>
 </TR>

 <TR>
 <TD ALIGN=right VALIGN=top>
 $(LBL_SHIPPING)
 </TD>
 <TD ALIGN=right VALIGN=middle BGCOLOR="white">
 %IF (SHIPRULE_EXISTS == "YES")
 $(CURRENCY) $(V_orshtot) $(V_orcpcur)
 %ELSE

 %ENDIF

 </TD>

 <TD BGCOLOR="white">
 %IF (SHIPRULE_EXISTS == "YES")
 $(TXT_SHIPPING_METHOD)
 %ELSE

 %ENDIF
 </TD>
 </TR>

 <TR>

 <TD></TD>
 <TD></TD>
 %IF (ProviderList != "")
 <TD>
 $(TXT_SHIPPING_OPTIONS)
 </TD>
 %ENDIF

 </TR>

 <TR>

 <TD></TD>
 <TD></TD>
 %IF (ProviderList != "")
 <TD ALIGN=right VALIGN=middle>
 <form action="/cgi-bin/ncommerce3/OrderShippingUpdate" method=post>
 <INPUT TYPE=hidden NAME=addr_rn VALUE=$(V_sarfnbr)>
 <INPUT TYPE=hidden NAME=order_rn VALUE=$(order_rn)>
 <INPUT TYPE=hidden NAME=url
VALUE="/cgi-bin/ncommerce3/OrderDisplay?status=P&merchant_rn=$(MerchantRefNum)&PAGE=PAYU
PDATE&SHOPPER_REF=$(SHOPPER_REF)&ADDRESS_REF=$(V_sarfnbr)&SHOPPER_TYPE=$(SHOPPER_TYPE)">
132 Exploring Net.Commerce Hosting Server

 <TABLE border=0 width=100% background=$(BodyImage) CELLSPACING=0
CELLPADDING=0 VSPACE=0 HSPACE=0>
 <TR>
 <TD>
 <select name=shipmode_rn>
 $(ProviderList)
 </select>
 </TD>
</TR>
<TR>
 <TD>
 <INPUT TYPE=submit VALUE="$(TXT_CHANGE_SHIPPING_SERVICE)">
 </TD>
 </TR>
 </TABLE>
 </TD>
 %ENDIF

 </TR>

 <TR>
 <TD ALIGN=right VALIGN=top>
 $(TXT_SHIPPINGTAX)
 </TD>
 <TD ALIGN=right VALIGN=middle bgcolor="white">
 $(CURRENCY) $(V_orshtxtot) $(V_orcpcur)
 </TD>
 </TR>

 <TR><TD></TD></TR>

 <TR>
 <TD ALIGN=right VALIGN=top>
 $(LBL_TOTAL)
 </TD>
 <TD ALIGN=right VALIGN=middle BGCOLOR="white">
 $(CURRENCY) $(total) $(V_orcpcur)
 </TD>
 </TR>

 <TR><TD>
</TD></TR>

 %}

 </TABLE>
 </FORM>

 %}

 %MESSAGE{

 100: {
 SHOW_TOTAL_PRICE_MerchantTax(): Nothing Found
 %}:CONTINUE

 default: {
 SHOW_TOTAL_PRICE_MerchantTax(): Error
 %}:CONTINUE
 %}
Net.Data macro for the checkout flow 133

%}

%function(dtw_odbc) CHECK_ORDER_STATUS() {

 SELECT orstat
 FROM orders
 WHERE ormenbr=$(MerchantRefNum) and orrfnbr=$(order_rn)

 %REPORT {
 %ROW {
 @DTW_assign(ORDER_STATUS, V_orstat)
 %}
 %}

 %MESSAGE{
 100:{ %} :continue
 default:{ Error with CHECK_ORDER_STATUS() %}
 %}
%}

%FUNCTION(dtw_odbc) GetAssignedShipModeRef(){

 SELECT distinct stsmnbr
 FROM shipto
 WHERE stornbr=$(order_rn) and stsmnbr is not null

 %REPORT{

 %ROW{

 @DTW_assign(AssignedShipRef, V_stsmnbr)
 %}
 %}
 %MESSAGE {
 100: {
 @DTW_assign(AssignedShipRef, "null")
 %}:continue
 default:{ Error with GetAssignedShipModeRef() %}
 %}

%}

%FUNCTION(dtw_odbc) GetFirstShipModeRef(){

 SELECT distinct mmrfnbr, smcarrid, smspmode
 FROM shipmode, mshipmode
 WHERE smrfnbr in (select mmsmnbr from mshipmode where mmmenbr= $(MerchantRefNum))
 and mmmenbr=$(MerchantRefNum) and mmsmnbr=smrfnbr

 %REPORT{

 @DTW_assign(counter, "1")
 @DTW_assign(firstShipRef, "null")

 %ROW{
 %IF (counter == "1")
 @DTW_assign(firstShipRef, V_mmrfnbr)
 %ENDIF

 @DTW_add(counter, "1", counter)
 %}
134 Exploring Net.Commerce Hosting Server

 %}
 %MESSAGE {
 100: {
 @DTW_assign(firstShipRef, "null")
 %}:continue
 %}

%}

%{==%}
%{ HTML Input Section
%{==%}

%HTML_INPUT{

<HTML>

<HEAD>
 <META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
</head>

<TITLE>$(LongStoreName) [$(TXT_TITLE_BILLTO)]</TITLE>

<BODY BACKGROUND="$(BodyImage)" BGCOLOR="$(BodyColor)" TEXT="$(TextCol)"
LINK="$(LinkCol)" VLINK="$(VLinkCol)" ALINK="$(ALinkCol)">

@GetAssignedShipModeRef()
@GetFirstShipModeRef()

%IF (firstShipRef != "null" && AssignedShipRef != "null")

<META HTTP-EQUIV="Refresh"

CONTENT="0;URL=/cgi-bin/ncommerce3/OrderShippingUpdate?order_rn=$(order_rn)&shipmode_rn=
$(AssignedShipRef)&merchant_rn=$(MerchantRefNum)&url=/cgi-bin/ncommerce3/OrderDisplay?st
atus%3dP%26PAGE%3dPAYUPDATE%26SHOPPER_REF%3d$(SHOPPER_REF)%26ADDRESS_REF%3d$(ADDRESS_REF
)%26SHOPPER_TYPE%3d$(SHOPPER_TYPE)">

%ELIF (firstShipRef != "null" && AssignedShipRef == "null")

<META HTTP-EQUIV="Refresh"

CONTENT="0;URL=/cgi-bin/ncommerce3/OrderShippingUpdate?order_rn=$(order_rn)&shipmode_rn=
$(firstShipRef)&merchant_rn=$(MerchantRefNum)&url=/cgi-bin/ncommerce3/OrderDisplay?statu
s%3dP%26PAGE%3dPAYUPDATE%26SHOPPER_REF%3d$(SHOPPER_REF)%26ADDRESS_REF%3d$(ADDRESS_REF)%2
6SHOPPER_TYPE%3d$(SHOPPER_TYPE)">

%else

<META HTTP-EQUIV="Refresh"

CONTENT="0;URL=/cgi-bin/ncommerce3/ExecMacro/$(DirectoryName)/ord_pay.d2w/report?ADDRESS
_REF=$(ADDRESS_REF)&SHOPPER_REF=$(SHOPPER_REF)&order_rn=$(order_rn)">

%ENDIF

</BODY>
</HTML>
%}

%{==%}
Net.Data macro for the checkout flow 135

%{ HTML Report Section %}
%{==%}

%HTML_REPORT {

<HEAD>
 <META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT">
 <TITLE>$(LongStoreName) [$(TXT_TITLE_PAYMENT)]</TITLE>
</HEAD>

<HTML>

<BODY BACKGROUND="$(BodyImage)" BGCOLOR="$(BodyColor)" TEXT="$(TextCol)"
LINK="$(LinkCol)" VLINK="$(VLinkCol)" ALINK="$(ALinkCol)">

<!-- Debug Information

Environment Information

order_rn = $(order_rn)

SHOPPER_REF = $(SHOPPER_REF)

ADDRESS_REF = $(ADDRESS_REF)

Query Information

-->

<CENTER>
<TABLE WIDTH=530 CELLPADDING=0 CELLSPACING=0 BORDER=0 ALIGN="center">

 <TR>
 <TD ALIGN="center" VALIGN="center">
 <H3>$(TXT_TITLE_PAYMENT)</H3>
 </TD>
 </TR>

 <TR>
 <TD>
 $(TXT_PAGEDESCRIPTION_PAYMENT)

 </TD>
 </TR>

</TABLE>
</CENTER>

@SET_TAXRULE_FLAG()
@SET_SHIPRULE_FLAG()
@GET_SHIPPING_INFORMATION()
@CHECK_ORDER_STATUS()

<CENTER>
<TABLE WIDTH=530 CELLPADDING=0 CELLSPACING=0 BORDER=0 ALIGN="center">

 <TR>
 <TD COLSPAN=2>@SHOW_TOTAL_PRICE_MerchantTax()</TD>
 </TR>

 <TR>
 <TD COLSPAN=2>@DISPLAY_DETAILS_LIST()</TD>
 </TR>
136 Exploring Net.Commerce Hosting Server

 <TR>
 <TD COLSPAN=2>
<HR WIDTH=550 ALIGN=CENTER></TD>
 </TR>

 %IF (ORDER_STATUS != "C")

 <FORM ACTION="/cgi-bin/ncommerce3/OrderProcess" METHOD="post">
 @GET_GIFTMESSAGE()

 <TR>
 <TD>
 $(TXT_PAYMENT):
 </TD>
 </TR>

 <TR>
 <TD>
 @GET_CCMESSAGE()
 @GET_CREDITCARDS()
 @GET_OFFLINE()

 </TD>
 </TR>

 <TR>
 <TD ALIGN="center">

 <INPUT TYPE=hidden NAME=merchant_rn VALUE=$(MerchantRefNum)>
 <INPUT TYPE=hidden NAME=order_rn VALUE=$(order_rn)>
 <INPUT TYPE=hidden NAME=billto_rn VALUE=$(ADDRESS_REF)>
 <INPUT TYPE=hidden NAME=ADDRESS_REF VALUE=$(ADDRESS_REF)>
 <INPUT TYPE=hidden NAME=SHOPPER_REF VALUE=$(SHOPPER_REF)>
 <INPUT TYPE=hidden NAME=TAXRULE_EXISTS VALUE=$(TAXRULE_EXISTS)>
 <INPUT TYPE=hidden NAME=SHIPRULE_EXISTS VALUE=$(SHIPRULE_EXISTS)>
 <input type=submit value="$(BUT_PURCHASE)">
 </FORM>
 </TD>
 </TR>
 %ELSE
 <TR>
 <TD COLSPAN=2 ALIGN="center">
 $(TXT_ORDER_COMPLETE)

 <A
HREF="/cgi-bin/ncommerce3/CategoryDisplay?cgmenbr=$(MerchantRefNum)&cgrfnbr=$(HomeCatego
ryNum)">$(LINK_CONTINUE)
 </TD>
 </TR>

 <TR><TD>
</TD></TR>

 %ENDIF

</TABLE>
</CENTER>

%INCLUDE "/CSPstoremodel/navbar.inc"

</BODY>

</HTML>

%}
Net.Data macro for the checkout flow 137

138 Exploring Net.Commerce Hosting Server

Appendix D. Source code for AddGiftMessage OF

This appendix contains the makefile and the source code for the
AddGiftMessage overridable function (OF).

makefile.giftmessage

==
=====

(c) Copyright IBM Corp. 1999. All Rights Reserved

##

==
=====
##
- Run the makfile as follows:
##
make -f makefile.giftmessage
##

NCROOT = /usr/lpp/NetCommerce3
TARNAME = addgiftmessage
OUTDIR = $(NCROOT)/bin
OUT = lib$(TARNAME).a

CC = xlC_r
LINKSHR = /usr/ibmcxx/bin/makeC++SharedLib_r
CFLAGS = $(DEBUG) -DAIX -qlistopt -qlist -qxref=full -c
GCAPILIBFLAGS = -+ $(DEBUG) -DAIX -DNLS_ENABLED -DCLNK
INC = -I$(NCROOT)/adt/include
LIBS = -L. -L$(NCROOT)/bin \
 -lnc3_containers \
 -lnc3_messages \
 -lnc3_common \
 -lnc3_dbc \
 -lserver_objs

OBJS = tasks_api.o \
 addGiftMessage.o

all : $(OUT)

$(OUT) : $(OBJS)
© Copyright IBM Corp. 1999 139

 $(LINKSHR) -bloadmap:api.loadmap -p 0 \
-o $@ $(OBJS) $(LIBS)

addGiftMessage.o : addGiftMessage.cpp
$(CC) $(INC) $(CFLAGS) addGiftMessage.cpp

tasks_api.o: tasks_api.cpp
 $(CC) $(INC) $(CFLAGS) tasks_api.cpp

clean :
rm *.o *.lst *.loadmap
rm $(OUT)

addGiftMessage.cpp

//
--

//
// (c) Copyright IBM Corp. 1999 All Rights Reserved
//
//
// FILE NAME: addGiftMessage.cpp
//
// DESCRIPTION: Net.Commerce overridable function for the EXT_ORD_PROC
task.
//
//
--

#include "nc_core.pch"
#include "objects/objects.pch"

#if defined (WIN32)
 #define __DLL_NCS_API__ __declspec(dllexport)
#elif defined(AIX)
 #define __DLL_NCS_API__
#endif

// ---
// Uncomment the #define statement below to enable the trace
// facilities.
// ---
140 Exploring Net.Commerce Hosting Server

// #define __TRACE_NCAPIS__

#ifdef __TRACE_NCAPIS__
 typedef TraceYes Trace;
#else
 typedef TraceNo Trace;
#endif
static Trace trace("NC_APIS ("__FILE__")");

// ---
// The overridable function addGiftMessage
// ---

class __DLL_NCS_API__ addGiftMessage : public NC_OverridableFunction {
 static const ClassName _STR_ThisClass;

 public:
 addGiftMessage() {
 Trace::Tracer T(_STR_CONSTRUCTOR, _STR_ThisClass);
 }
 virtual ~addGiftMessage() {
 Trace::Tracer T(_STR_DESTRUCTOR, _STR_ThisClass);
 }

 void operator delete(void* p) { ::delete p; }

 public:
 virtual bool Process(const HttpRequest& Req, HttpResponse& Res,
NC_Environment& Env) {
 Trace::Tracer T(_STR_Process, _STR_ThisClass);

 return ProcessGiftMessage(Req, Res, Env);
 }

 virtual bool ProcessGiftMessage(const HttpRequest& Req, HttpResponse&
Res, NC_Environment& Env) {
 Trace::Tracer T("ProcessGiftMessage", _STR_ThisClass);

 // --
 // This parameter ORDER_REF_NUN is documented by Net.Commerce
 // as part of the interface between the command and the API.
 // --
 const String& OrderRefNum = *(const String *)
Env.Seek("ORDER_REF_NUM");
Source code for AddGiftMessage OF 141

 long ordernumber = 0;
 long merchantnumber = 0;

 OrderRefNum.getVal(ordernumber);
 _MerchantRefNum.getVal(merchantnumber);

 // --
 // Get the name value pair ’giftmessage’ from the URL posted
 // by the browser.
 // --

 const StringWithOwnership NVP_giftmessage("giftmessage");

 const NameValuePairMap& NVPMap = Req.getNVPs();
 const String& GiftMessage = NVPMap.Get(NVP_giftmessage);

 // --
 // Check if the ’giftmessage’ parameter has been specified
 // --
 if (GiftMessage.IsEmpty()) {
 trace << indent << " ProcessGiftMessage : No Gift Message"
 << " for order ORRFNBR = " << ordernumber << endl;
 return true;
 }

 // --
 // Add the gift message to order in the ORDERS table.
 // --

 String Stmt;
 DataBase *DbConnection = DataBaseManager::GetCurrentDataBase();

 Stmt.Clean();
 Stmt << "UPDATE ORDERS "
 << "SET ORFIELD3 = ’" << GiftMessage << "’ "
 << "WHERE ORRFNBR = " << ordernumber;

 SQL SqlUpdateGiftMessage(*DbConnection, Stmt);

 if (SqlUpdateGiftMessage.getSQLrc() != ERR_DB_NO_ERROR) {
 SqlUpdateGiftMessage.ReportError();
 trace << indent << " ProcessGiftMessage : Updating gift"
 << " message failed. ORRFNBR = " << ordernumber << endl;
 }
 else {
 trace << indent << " ProcessGiftMessage : Updating gift"
 << " message for order ORRFNBR = " << ordernumber << endl;
142 Exploring Net.Commerce Hosting Server

 }

 // --
 // We always return TRUE even when something fails or the
 // database would be rolled back (= no order).
 // --
 return true;
 }
};

const ClassName addGiftMessage::_STR_ThisClass("AddGiftMessage");

static bool X =
NC_OverridableFunctionManager::GetUniqueInstance().RegisterApi
 ("IBM ITSO", "NC", "AddGiftMessage", 1.0, new
addGiftMessage);
Source code for AddGiftMessage OF 143

144 Exploring Net.Commerce Hosting Server

Appendix E. Template file for the order details page

This appendix contains customized version of the InvoicePage.tem template
file found in /usr/lpp/NetCommerce3/CHS/mpg_templates directory. It is used
to customize manage orders menu in the merchant tool for managing gift
message.

InvoicePage.tem

main()
{
 Sub env, resources, data

 Var selectedType

 selectedType = ""

/*

<!--==
IBM Confidential

OCO Source Materials

5648-B47

(C) Copyright IBM Corp. 1998

The source code for this program is not published or otherwise divested of its
trade secrets, irrespective of what has been deposited with the U.S. Copyright
Office.

===-->
<HTML>
<HEAD>
 <BASE HREF="https://$env.hostname$/">
 <META HTTP-EQUIV="expires" CONTENT="0">
 <META NAME="GENERATOR" CONTENT="Mozilla/4.04 [en] (WinNT; U) [Netscape]">
 <TITLE>invoice</TITLE>
<SCRIPT>

function openHelp(fileName) {

 a = window.open("http://$env.hostname$/nchelp/panelinf/" + fileName, ’help’,
’toolbar=no,menubar=yes,width=540,height=480’);

 }

function showNumber(order_rn) {

 a = window.open("https://$env.hostname$/cgi-bin/ncommerce3/GetPaymentInfo?order_rn="
+ order_rn + "&url=/cgi-bin/ncommerce3/ExecMacro/pdi.d2w/report" , ’view’,
’toolbar=no,menbar=yes,width=300,height=250’);
 a.focus()
}

function reallyRemove() {
© Copyright IBM Corp. 1999 145

 return confirm("$resources.RemoveConfirm$ #$data.orderNumber$
$resources.QuestionMark$");
}

function getOrderType(sType) {

 //alert("$data.SelectedType$");
 //var type = ’$data.SelectedType$’;
 //var type = ’$selectedType$’;
 var type = sType;

 if (type == ’$resources.PENDING_STATE$’)
 document.changeStatus.SelectedType.value = "0";
 else if (type == ’$resources.COMPLETE_STATE$’)
 document.changeStatus.SelectedType.value = "1";
 else if (type == ’$resources.FAILED_STATE$’)
 document.changeStatus.SelectedType.value = "8";
 else if (type == ’$resources.INVENTORY_STATE$’)
 document.changeStatus.SelectedType.value = "3";
 else if (type == ’$resources.CANCEL_STATE$’)
 document.changeStatus.SelectedType.value = "4";
 else if (type == ’$resources.SHIPPED_STATE$’)
 document.changeStatus.SelectedType.value = "5";
 else if (type == ’$resources.AUTHORIZED_STATE$’)
 document.changeStatus.SelectedType.value = "6";
 else if (type == ’$resources.NEWORDER_STATE$’)
 document.changeStatus.SelectedType.value = "7";
 else
 document.changeStatus.SelectedType.value = "0";

}

</SCRIPT>

</HEAD>
<BODY BGCOLOR=’WHITE’>

<!--==
 Qeury to retrieve the product, order, address, tax, shipto , shipping and
 payment info.

===-->
*/

 -- --- --
 -- Check this is a cybercash failed --
 -- --- --
 Var cyberFailed
 Var taxDescription
 cyberFailed = "false"
 taxDescription = resources.TAXDESCRIPTION + ":"
 Query stmt20

 stmt20 = "select orrfnbr from orders, ordpaymthd, cypaymthd " +
 "where orrfnbr=" + data.selectedOrder +
 " and orrfnbr=omornbr and ompaymthd=’CYBER’ and " +
 "cyornbr=orrfnbr and cystatus = ’failure-hard’ "
 repeat (stmt20) {

 cyberFailed = "true"
 }
146 Exploring Net.Commerce Hosting Server

 Query stmt1
 Var lastUpdate, billToRef, shipto, billto, itemList
 Var satitle, prldesc1, prldesc2, stfield2, saaddr2, saaddr3
 Var currency, taxCode, country, state

 saaddr2= ""
 saaddr3= ""

 -- --- --
 -- Section for Order Information: --
 -- --
 -- Table Used: shipto, product, shaddr, orders --
 -- --
 -- --- --
 stmt1= "select satitle, salname, safname, samname, saphone1, saaddr1, " +
 "saaddr2, saaddr3, sacity, sastate, sacntry, sazipc, strfnbr, " +
 "stornbr, stsanbr, stshnbr, stprnbr,stprice, stcpcur, stpcode, " +
 "stquant, prsdesc, prldesc2, orbllto, orustmp, stcmt " +
 "from shipto, product, shaddr , orders " +
 "where stornbr=" + data.selectedOrder +
 " and prrfnbr=stprnbr and sarfnbr=stsanbr and orrfnbr= stornbr "

 itemList = ""

 repeat (stmt1) {

 lastUpdate = stmt1.orustmp -- last update date for current order

 if (stmt1.satitle == "null") satitle = "" -- no title for this shopper
 else satitle = stmt1.satitle

 -- if (stmt1.prldesc1== "null") prldesc1= "" -- no 1st description field for
this product
 -- else prldesc1= stmt1.prldesc1
 prldesc1 = ""

 if (stmt1.prldesc2== "null") prldesc2= "" -- no 2nd description field for
this product
 else prldesc2= stmt1.prldesc2

 if (stmt1.stcmt == "null") stfield2= "" -- no comment field for this
product
 else stfield2= stmt1.stcmt

 if (stmt1.saaddr2 == "null") saaddr2 = "" -- no 2nd address field for this
shopper
 else saaddr2 = stmt1.saaddr2

 if (stmt1.saaddr3 == "null") saaddr3 = "" -- no 3rd addres field for this
shopper
 else saaddr3 = stmt1.saaddr3

 -- the list of orders for a store, this will be imbeded into a select box in html
page --

 if (cyberFailed == "true")
 selectedType = resources.FAILED_STATE
 else
 selectedType = data.SelectedType

 itemList += "<TR><TD VALIGN=TOP WIDTH=’80’> " + stmt1.stquant +
"</TD>" +
Template file for the order details page 147

 "<TD VALIGN=TOP WIDTH=’80’>" + stmt1.prsdesc + "</TD>" +
 "<TD VALIGN=TOP WIDTH=’120’>" + prldesc2 + "
"
+ stfield2 + "</TD>" +
 "<TD VALIGN=TOP WIDTH=’2’> </TD>" +
 "<TD VALIGN=TOP WIDTH=’80’>" + stmt1.stprice + "</TD>" +
 "<TD VALIGN=TOP WIDTH=’120’>" + selectedType + "</TD>" +
 "<TD VALIGN=TOP>" + stmt1.stprice|multiply(stmt1.stquant)|round(2) +
"</TD></TR>" -- stprice * stquant

 billToRef = stmt1.orbllto -- the reference number for bill to address

 -- this is the shipto address including last name, first name, address, telephone
etc. --
 -- It will be imbeded into a html table --
 shipto = "<TR><TD WIDTH=’20’></TD><TD>" + satitle + " " +
stmt1.salname + ", " + stmt1.safname + "</TD></TR>" +
 "<TR><TD WIDTH=’20’></TD><TD>" + stmt1.saaddr1 + ", " +
saaddr2 + " " + saaddr3 + "</TD></TR>" +
 "<TR><TD WIDTH=’20’></TD><TD>" + stmt1.sacity + ", " +
stmt1.sastate + "</TD></TR>" +
 "<TR><TD WIDTH=’20’></TD><TD>" + stmt1.sacntry + ", " +
stmt1.sazipc + "</TD></TR>" +
 "<TR><TD> </TD><TD> </TD></TR>" +
 "<TR><TD WIDTH=’20’></TD><TD>" + stmt1.saphone1 +
"</TD></TR>"

 --
--- --
 -- Get tax code description associated the current tax country and state
jurisdictions --

--
-
 taxCode = stmt1.stpcode -- tax code assigned
 country = stmt1.sacntry -- shipto country
 state = stmt1.sastate -- shipto state

 Query stmt2
 Var taxCodeField

 if (taxCode == "null") taxCodeField = " TXPCODE is NULL " --
null tax Code
 else taxCodeField = " TXPCODE=’" + taxCode + "’ "

 stmt2 = "select TXCODDESC from taxrule where txmenbr=" + data.Menbr +
 " and UCASE(txcntry)= ’" + country | upperCase() +
 "’ and UCASE(txstate) = ’" + state | upperCase() +
 "’ and " + taxCodeField

 stmt2|reset()

 if (stmt2|size() != 0) { -- found tax code description
 taxDescription += stmt2.txcoddesc + "; "
 }
 else { -- cannot find a tax code description,
search for the state is NULL
 Query stmt3
 stmt3 = "select TXCODDESC from taxrule where txmenbr=" +
 data.Menbr + " and UCASE(txcntry)= ’" +
 country | upperCase() + "’ and txstate is NULL and " +
 taxCodeField
148 Exploring Net.Commerce Hosting Server

 stmt3|reset()
 if (stmt3|size() != 0) { -- found tax code description
 taxDescription += stmt3.txcoddesc + "; "
 }
 else taxDescription = ""
 }

 }

 currency = stmt1.stcpcur -- what currency ?
 taxCode = stmt1.stpcode -- tax code assigned
 country = stmt1.sacntry -- shipto country
 state = stmt1.sastate -- shipto state

 -- -- --
 -- Section: get shipping mode and services --
 -- --
 -- -- --
 Var shippingMode
 Query stmt4

 stmt4 = "select distinct smcarrid, smspmode, smspdesc from shipmode, " +
 "mshipmode, product, shipto where smrfnbr=mmsmnbr and mmrfnbr " +
 "in (select stsmnbr from shipto where stornbr=" + data.selectedOrder +
 ") and stprnbr=prrfnbr "

 stmt4|reset()
 if (stmt4|size() != 0) {
 shippingMode = stmt4.smcarrid + "," + stmt4.smspmode
 }
 else shippingMode = ""

 -- --- --
 -- Bill to Infomation --
 -- --- --
 Var safname

 if (billToRef == "null") { -- bill-to is the same as shipto
 billto = resources.THE_SAME_AS_BILLTO
 }
 else { -- get bill-to info
 Query stmt5

 stmt5 ="select satitle, salname, safname, samname, saphone1, saaddr1, saaddr2, " +
 " saaddr3, sacity, sastate, sacntry, sazipc " +
 " from shaddr where sarfnbr=" + billToRef

 stmt5|reset()
 if (stmt5.satitle == "null") satitle = " "
 else satitle = stmt5.satitle
 if (stmt5.safname == "null") safname = " "
 else safname = stmt5.safname
 if (stmt5.saaddr3 == "null") saaddr3 = " "
 else saaddr3 = stmt5.saaddr3
 if (stmt5.saaddr2 == "null") saaddr2 = " "
 else saaddr2 = stmt5.saaddr2

 billto = "<TR><TD WIDTH=’20’></TD><TD>" + satitle + " " + stmt5.salname
+ ", " + safname + "</TD></TR>" + -- name
 "<TR><TD WIDTH=’20’></TD><TD>" + stmt5.saaddr1 + ", " +
saaddr2 + " " + saaddr3 + "</TD></TR>" + -- address
Template file for the order details page 149

 "<TR><TD WIDTH=’20’></TD><TD>" + stmt5.sacity + ", " +
stmt5.sastate + "</TD></TR>" + -- country, state
 "<TR><TD WIDTH=’20’></TD><TD>" + stmt5.sacntry + ", " +
stmt5.sazipc + "</TD></TR>" + -- zipcode
 "<TR><TD> </TD><TD> </TD></TR>" +
 "<TR><TD WIDTH=’20’></TD><TD>" + stmt5.saphone1 +
"</TD></TR>"

 }

 -- -- --
 -- Get tax, shipping , tax on shipping and total charge --
 -- -- --
 Var total, tax, shipping , taxOnShipping
 Var total_after

 Query stmt6

 stmt6 = "select orprtot, ortxtot, orshtot, orshtxtot from orders where orrfnbr=" +
 data.selectedOrder

 stmt6 |reset()

 if (stmt6.orprtot == "null") total = "0.00"
 else total = stmt6.orprtot|floor(2)
 if (stmt6.ortxtot == "null") tax = "0.00"
 else tax = stmt6.ortxtot|floor(2)
 if (stmt6.orshtot == "null") shipping = "0.00"
 else shipping = stmt6.orshtot|floor(2)
 if (stmt6.orshtxtot == "null") taxOnShipping = "0.00"
 else taxOnShipping = stmt6.orshtxtot|floor(2)

 -- get total revenue
 --
 total_after = total|add(tax)|add(shipping)|add(taxOnShipping)|floor(2)

 -- --- --
 -- Get CyberCash payment info (online, offline) --
 -- --- --
 Query stmt7

 Var paymethod, creditType, cardNumber, expireDate, cyberCashState, cyberCashStatus

 creditType = ""
 cardNumber = ""
 expireDate = ""
 cyberCashStatus = ""
 cyberCashState = ""
 paymethod = ""

 stmt7 = "select ompaymthd, ompaydevc, omdeffs from ordpaymthd where omornbr=" +
 data.selectedOrder

 stmt7 |reset()

 if (stmt7 |size() != "0") {

 creditType = stmt7.ompaymthd
 cardNumber = stmt7.ompaydevc
150 Exploring Net.Commerce Hosting Server

 expireDate = stmt7.omdeffs

 if (stmt7.ompaymthd == "CYBER") { -- Paid by cyberCash
 paymethod = resources.CYBERCASH_NAME -- the name of cybercash
 Query stmt8
 stmt8 = "select cystate, cystatus, cycard_number, cycard_exp from cypaymthd where
cyornbr=" +
 data.selectedOrder
 stmt8 |reset()
 if (stmt8 | size() != "0") {
 if (stmt8.cycard_number | isDigit() == "true")
 cardNumber = stmt8.cycard_number
 else
 cardNumber = " "

 cyberCashState = resources.CYBERCASH_STATE + " : " + stmt8.cystate
 cyberCashStatus= resources.CYBERCASH_STATUS + " : " + stmt8.cystatus
 expireDate = stmt8.cycard_exp
 }
 }
 else { -- non CyberCash Payment
 if (stmt7.ompaydevc |substring(1,8) == "OFF-LINE") { -- off line non cyberCash
 paymethod = resources.OFFLINE_PAYMENT
 expireDate= " "
 }
 else {
 paymethod = resources.OFFLINE_PAYMENT
 }

 }

 }

 -- -- --
 -- Get Order Remark Info --
 -- -- --
 Query stmt9
 Var history

 history = ""

 stmt9 = "select ortmstmp, orcoment from orcomment where orrefnbr=" +
 data.selectedOrder + " order by ortmstmp "

 repeat (stmt9) {
 history += "\n[" + stmt9.ortmstmp + "]\n" + stmt9.orcoment + "\n\n"
 }

 -- -- --
 -- Get Gift Message --
 -- inserted for Gift Message customization --
 -- -- --
 Query stmt10
 Var giftmsg

 giftmsg = ""

 stmt10 = "select orfield3 from orders where orrfnbr=" +
 data.selectedOrder

 stmt10 | reset()
 giftmsg += stmt10.orfield3
Template file for the order details page 151

/*

<!--==
 End of Qeury
===-->

<H2>$resources.INVOICE_PAGE$</H2>

<TABLE BORDER=0 COLS=1 WIDTH="602" BGCOLOR="#6699CC" >
 <TR>
 <TD>$resources.OrderInfo$</TD>
 </TR>
</TABLE>

<TABLE>
 <TR>
 <TD> </TD>
 </TR>
 <TR>
 <TD>$resources.OrderNumber$ $data.orderNumber$</TD>
 <TD> </TD>
 <TD>$resources.LastUpdate$ $lastUpdate$</TD>
 </TR>
 <TR>
 <TD> </TD>
 </TR>
</TABLE>

<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 CELLPADDING=0 COLS=7 WIDTH="602">
 <TR BGCOLOR="#CCCCCC">
 <TD WIDTH="80">$resources.Quantity$</TD>
 <TD WIDTH="80">$resources.InvoiceProduct$</TD>
 <TD WIDTH="120">$resources.ProductDesc$</TD>
 <TD WIDTH="2"> </TD>
 <TD WIDTH="80">$resources.ProductPrice$</TD>
 <TD WIDTH="120"><FONT
COLOR="#000099">$resources.ProductOrderState$</TD>
 <TD>$resources.ProductTotal$</TD>
 </TR>

<TR>

$itemList$

</TABLE>

<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=4 WIDTH="602" BGCOLOR="#CCCCCC" >
 <TR>
 <TD WIDTH="155"> </TD>
 <TD WIDTH="220"> </TD>
 <TD WIDTH="140"> </TD>
 <TD> </TD>
 </TR>
 <TR>
 <TD WIDTH="155"> </TD>
 <TD WIDTH="220"> </TD>
 <TD WIDTH="140">$resources.ProductTax$</TD>
 <TD>tax</TD>
 </TR>
 <TR>
 <TD WIDTH="155"> </TD>
152 Exploring Net.Commerce Hosting Server

 <TD WIDTH="220"> </TD>
 <TD WIDTH="140"><FONT
COLOR="#000099">$resources.ProductShipping$</TD>
 <TD>$shipping$</TD>
 </TR>
 <TR>
 <TD WIDTH="155"> </TD>
 <TD WIDTH="220"> </TD>
 <TD WIDTH="140"><FONT
COLOR="#000099">$resources.ProductTaxOnShipping$</TD>
 <TD>$taxOnShipping$</TD>
 </TR>
 <TR>
 <TD WIDTH="155"> </TD>
 <TD WIDTH="220"> </TD>
 <TD WIDTH="140">______________</TD>
 <TD>____</TD>
 </TR>
 <TR>
 <TD WIDTH="155"> </TD>
 <TD WIDTH="220"> </TD>
 <TD WIDTH="140">$resources.TotalForOrder$
($currency$)</TD>
 <TD>$total_after$</TD>
 </TR>
 <TR>
 <TD WIDTH="155"> </TD>
 <TD WIDTH="220"> </TD>
 <TD WIDTH="140"> </TD>
 <TD> </TD>
 </TR>
</TABLE>

$taxDescription$

$resources.ShipMode$ $shippingMode$

<TABLE BORDER=0 COLS=1 WIDTH="602" BGCOLOR="#6699CC" >
 <TR>
 <TD>$resources.AddressInfo$</TD>
 </TR>
</TABLE>

<TABLE COLS=3 WIDTH="540">
 <TR>
 <TD> </TD>
 </TR>

 <TR>
 <TD WIDTH= "250">$resources.ShipTo$
 <TABLE>
 <TR>
 <TD WIDTH="20"></TD>
 <TD></TD>
 </TR>
Template file for the order details page 153

 $shipto$
 </TABLE>
 </TD>

 <TD WIDTH="20">

 </TD>

 <TD WIDTH="250">$resources.BillTo$
 <TABLE>
 <TR>
 <TD WIDTH="20"></TD>
 <TD></TD>
 </TR>

 $billto$

 </TABLE>

 </TD>
 </TR>
</TABLE>

<TABLE BORDER=0 COLS=1 WIDTH="602" BGCOLOR="#6699CC" >
 <TR>
 <TD>$resources.ProductPaymentInfo$</TD>
 </TR>
</TABLE>

<TABLE>
 <TR>
 <TD WIDTH="130">$resources.ProductPaymentMethod$</TD>
 <TD>$paymethod$</TD>
 </TR>
 <TR>
 <TD WIDTH="130">$resources.ProductCreditCard$</TD>
 <TD>$creditType$</TD>
 <TR>
 <TD WIDTH="130">$resources.ProductCreditCardNumber$</TD>
 <TD>*/
 if (cardNumber | strip() | isDigit() == "true" || cardNumber == " ") {
 /*$cardNumber$*/
 }
 else if (cardNumber|occurencesOf("OFF-LINE") == "1") {
 /*$resources.NO_CREID_CARD_AVA$*/
 }
 else {
 /*

 <FORM NAME="openData">
 <INPUT TYPE=’button’ VALUE=’View Credit Card Number’
onClick=’showNumber($data.selectedOrder$)’>
 </FORM>
 */
 }
/*
 </TD>
 </TR>
 <TR>
 <TD WIDTH="130">$resources.ProductExpireDate$</TD>
154 Exploring Net.Commerce Hosting Server

 <TD>$expireDate$</TD>
 </TR>
</TABLE>

<TABLE>
 <TR><TD>$cyberCashState$</TD></TR>
 <TR><TD>$cyberCashStatus$</TD></TR>
</TABLE>

*/
 addRemoveComments(history, data.runCommand)

 -- inserted for Gift Message customization
 addGiftMessage(giftmsg)

/*

<CENTER></CENTER>

<HR WIDTH="100%">

<CENTER>

<TABLE>
 <TR>
 <TD>
 */
 addChangeStatusButton(data.SelectedType, data.runCommand, selectedType)
 /*
 </TD>
 <TD WIDTH=’5’> </TD>
 <TD>
 <FORM NAME=’InvoiceCancel’ METHOD=’POST’ ACTION=’servlet/MerchantAdmin’>

 <!-- Hidden field to make sure the browser does not cache the confirm page -->
 <SCRIPT>
 var now = new Date();
 document.writeln(’<INPUT TYPE=hidden NAME="CTS" VALUE= "’ + now.getTime()
+ ’">’);
 </SCRIPT>

 <INPUT TYPE=’hidden’ NAME=’GOTO’ VALUE=’CHS_OrderProcess’>
 <INPUT TYPE=’submit’ NAME=’ToProcessPage’
VALUE=’$resources.GoBackToOrderPageButton$’>

 $data.hiddenFormShowType$
 $data.hiddenFormSortType$
 $data.hiddenFormCommand$
 </FORM>
 </TD>

 </TR>
</TABLE>
</CENTER>

<P>

Template file for the order details page 155

</BODY>
</HTML>

*/

}

addRemoveComments(history, command) {

 Sub resources, data

 if (history == "") {

 /*

 */
 }
 else

 if (command == "merchant")
 {
 /*

 <TABLE BORDER=0 COLS=1 WIDTH="602" BGCOLOR="#6699CC" >
 <TR>
 <TD>$resources. CommentInfo$</TD>
 </TR>
 </TABLE>

 <FORM NAME=’comment’>
 <TEXTAREA rows=10 cols=50 WRAP=on>
 $history$
 </TEXTAREA>
 </FORM>

 <FORM NAME=’removeComment’ METHOD=’POST’ ACTION=’servlet/MerchantAdmin’
onSubmit=’return reallyRemove()’>

 <!-- Hidden field to make sure the browser does not cache the confirm page -->
 <SCRIPT>
 var now = new Date();
 document.writeln(’<INPUT TYPE=hidden NAME="CTS" VALUE= "’ + now.getTime() +
’">’);
 </SCRIPT>

 <INPUT TYPE=’hidden’ NAME=’GOTO’ VALUE=’InvoicePage’>
 <INPUT TYPE=’submit’ NAME=’removeBtn’ VALUE=’$resources.RemoveComments$’>
 <INPUT TYPE=’hidden’ NAME=’SelectedOrders’ VALUE=’$data.orderNumber$’>
 <INPUT TYPE=’hidden’ NAME=’SelectedType’ VALUE=’$data.SelectedType$’>

 $data.hiddenFormShowType$
 $data.hiddenFormSortType$
 $data.hiddenFormCommand$
 </FORM>

 */
 }
 else {

 /*
 $resources.CommentInfo$
156 Exploring Net.Commerce Hosting Server

 <FORM NAME=’comment’>
 <TEXTAREA rows=10 cols=50 WRAP=on>
 $history$
 </TEXTAREA>
 </FORM>

 */
 }

}

-- inserted for Gift Message customization

addGiftMessage(giftmsg) {

 if (giftmsg != "null") {

 /*

 <TABLE BORDER=0 COLS=1 WIDTH="602" BGCOLOR="#6699CC" >
 <TR>
 <TD>Gift message</TD>
 </TR>
 </TABLE>

 <FORM NAME=’giftmessage’>
 <TEXTAREA rows=10 cols=50 WRAP=on>
$giftmsg$
 </TEXTAREA>
 </FORM>

 */
 }

}

addChangeStatusButton(type, command, stype)
{
 Sub resources, data

 if (type == "Cancel" || type == "Shipped" || type == "Cancelled") {
 /*

 */
 }
 else
 if (command == "merchant")
 {

 /*
 <FORM NAME=’changeStatus’ METHOD=’POST’ ACTION=’servlet/MerchantAdmin’
onsubmit=’getOrderType("$stype$")’>

 <!-- Hidden field to make sure the browser does not cache the confirm page -->
 <SCRIPT>
 var now = new Date();
 document.writeln(’<INPUT TYPE=hidden NAME="CTS" VALUE= "’ + now.getTime()
+ ’">’);
Template file for the order details page 157

 </SCRIPT>

 <INPUT TYPE=’hidden’ NAME=’GOTO’ VALUE=’ChangeStatus’>
 <INPUT TYPE=’submit’ NAME=’changeStatus’
VALUE=’$resources.ChangeStatusButton$’>
 <INPUT TYPE=’hidden’ NAME=’SelectedOrders’ VALUE=’$data.orderNumber$’>
 <INPUT TYPE=’hidden’ NAME=’SelectedType’ VALUE=’’>
 $data.hiddenFormShowType$
 $data.hiddenFormSortType$
 $data.hiddenFormCommand$

 </FORM>

 */
 }
 else
 if (command == "shopper" && type == "Pre-authorized")
 {

 /*

 <FORM NAME=’changeStatus’ METHOD=’POST’ ACTION=’servlet/MerchantAdmin’
onsubmit=’getOrderType("$stype$)’>

 <!-- Hidden field to make sure the browser does not cache the confirm page -->
 <SCRIPT>
 var now = new Date();
 document.writeln(’<INPUT TYPE=hidden NAME="CTS" VALUE= "’ + now.getTime()
+ ’">’);
 </SCRIPT>

 <INPUT TYPE=’hidden’ NAME=’GOTO’ VALUE=’ChangeStatus’>
 <INPUT TYPE=’submit’ NAME=’changeStatus’
VALUE=’$resources.ChangeStatusButton$’>
 <INPUT TYPE=’hidden’ NAME=’SelectedOrders’ VALUE=’$data.orderNumber$’>
 <INPUT TYPE=’hidden’ NAME=’SelectedType’ VALUE=’’>
 $data.hiddenFormShowType$
 $data.hiddenFormSortType$
 $data.hiddenFormCommand$

 </FORM>

 */

 }
 else {
 /*

 */
 }
}

158 Exploring Net.Commerce Hosting Server

Appendix F. A MultiPurpose Code Generation language

F.1 Purpose

The purpose of this document is to describe a template driven framework that
may be used to facilitate the generation of code. This framework has many
applications from simple form letters, or HTML pages to complex programs or
class libraries created by application builders.

F.2 Introduction

F.2.1 What is MPG?

MPG (MultiPurpose Generator) is a utility that may be used to generate
output. The output may be anything from form letters to HTML pages to
complex C++/Java code. MPG splits the generation into two components:
the model and the template. The model is the set of external data (variables)
that is used to generate the output. The template is the logic that describes
how the output is to be generated.

Consider a letter of confirmation that an employer sends to confirm that they
received an application for employment. Rather than personally writing a
letter to every person that applied, the company would probably issue a
standard letter and simply change the name, address, position applied for,
etc. The standard letter, in this case, would be the template and the model
would consist of the static information:

Model:

name.first: Sally

name.last: Smith

address.line1: 2400 Bayview Ave, Apt 23

address.line2: North York, Ont

address.postal_code: M4N 1JS

position: Development Analyst

internal_contact: Dave Johnston

contact_position: Human Resources Directory

date: June 21, 1997

cc_list[0]: Fred Smith
A MultiPurpose Code Generation language 159

cc_list[1]: Barney Noble

Template:

form_letter()
{
 Model name, address, position, internal_contact, contact_persion, date,
cc_list

 /*
Enterprise Software

$date$

$name.first$ $name.last$
$address.line1$
$address.line2$
$address.postal_code$

Dear $name.first$:

On behalf of the company I would like to thank you for applying for the
position of $position$. Blah, Blah....

Sincerely,

$internal_contact$
$contact_position$

cc: */
 repeat(cc_list | middle (“, ”)) {
 cc_list
 }

}

The above example reveals some of the elementary syntax of the template
language. The body of the letter is enclosed with the delimiters /* and */ as
free form text. For convenience, the writer of the template has escaped from
the free form text using a $ sign to substitute a variable from the external
model (Note this is the same as /* Enterprise Software */ date /* */).
Variables are pulled in from the model by declaring them as: Model var1, var2
etc.
160 Exploring Net.Commerce Hosting Server

F.2.2 Why MPG?

This is a question that I have often been asked and have often asked myself
in the past. This question is best answered by starting at the root from which
this language evolved.

MPG evolved from my work on a previous project, Data Access Builder for
C++/Java (DAX). DAX was an application that was used to map database
tables and SQL result sets to object-oriented classes. Once the user had
defined a mapping, the builder would generate classes (in the form of C++ or
Java code) that could be used to access the database. The logic for
generating these classes was originally C++ code. During development, the
developer would make changes to the code, rebuild the application, run it,
and examine the output. This became a very tedious process, especially
when making small changes (such as updating a comment). The syntax of
the C++ language made the code generation rather awkward. Static text
could not span more than one line without ending the string with an “ (and
don’t forget to put \n!). Substituting variables often required a string
conversion and syntax like ...“ + new IString(variable) + “... The looping
structures (while, for) were not well suited for generating function calls (‘,’
must be between variables, need to keep track of an external iterator).
Handling lists in general proved awkward. After time, (with many developers
editing the same code) the model/view separation in the code started to
deteriorate.

It was these any many other issues that started the evolution of MPG. First,
the static text was moved into an external file to make for easy ‘simple’
modifications. The text file eventually served as an outline for the generated
code. It became natural to add certain ‘primitive’ constructs to this file such
as conditional, and looping structures. This text file eventually evolved into
the MPG template.

The following summarizes some of the key features of MPG that make it a
better alternative to using traditional languages such as C++/Java:

1. Clear separation between model and view

2. Simple language designed for code generation

1. Easier syntax

1. Free form text

2. No statement terminators

3. Output stream is implicit

2. Weak typing
A MultiPurpose Code Generation language 161

1. Datatype conversions are automatic

2. No type casting

3. Specially designed constructs

1. Repeat loop

2. List manipulation

3. Designed for the common ‘code generation’ case

4. Special additions

1. Counters

2. SQL Queries

3. SQL Statements

5. String manipulation

1. Built-in transformations for string formatting

2. Built-in support for currency formatting

3. Interpreted templates (no need to compile)

1. Quicker development lifecycle

4. Security control

1. Direct control over the model that is accessible from the template

2. No file manipulation

3. No network access

4. Database access can be turned on/off

5. Scope is limited to the given print stream and the external model. (No
other I/O can occur)

F.3 Data Model

In this section, we will describe how to create the model that is to be used in
the template.

F.3.1 Declaring model variables

In order to use variables from the model, they must be declared in the
template. A declaration is prefaced with the keyword Model. Multiple entries
may be used from the model by separating them with commas. Model
declarations may occur inside procedures, or at the global scope (accessible
in all procedures).
162 Exploring Net.Commerce Hosting Server

Example:

main()
{
Model env, merchant
...
}

In the above template, the programmer has declared two variables that will be
extracted from the model, env and merchant. At runtime, the generator will
extract the variables that have been mapped to the keys (env, merchant) from
the model (Hashtable) and map them to env and merchant in the template.

F.3.2 Creating the model

Since MPG has been written in Java, its data model consists of Java objects.
The model that is passed to the template is a Hashtable that contains a
mapping of the name of the variable to the Java object that it represents.
Some of the most common types of Java objects used in the model are
String, Boolean, Double, Vector and Hashtable.

Example:

Hashtable model = new Hashtable();

F.3.2.1 Using regular Java objects
Regular Java objects (ie from package java.lang) are typically used as single
values in the model. Objects of type java.lang.String are the most commonly
used. Numbers (java.lang.Integer, java.lang.Double), java.lang.Boolean etc
are also quite common. In general, MPG uses the toString() method on these
objects when generating the output.

Example:

model.put(“name”, “Jane Smith”);
model.put(“today”, new Date());
model.put(“flag”, Boolean.TRUE);
model.put(“number_of_items”, new Integer(20));

F.3.2.2 Using Hashtables
Objects of type java.util.Hashtable may be used in MPG to create structures.
For example, the address variable consists of a Hashtable that contains other
variables (in this case variables of type String). The variables in the
Hashtable may be directly accessed by their keys. The Hashtable can of
course contain other Hashtables, this allows infinite levels of structures and
sub-structures.
A MultiPurpose Code Generation language 163

For example, the model used in the form letter template (see introduction)
may have been created as follows:

// name substitutions
Hashtable name = new Hashtable();
name.put(“first”, “Sally”);
name.put(“last”, “Smith”);
model.put(“name”, name);

// address substitutions
Hashtable address = new Hashtable();
address.put(“line1”, “2400 Bayview Ave, Apt 23”);
address.put(“line2”, “North York, Ont”);
address.put(“postal_code”, “M4N 1JS”);
model.put(“address”, address);

F.3.2.3 Using Vectors and Arrays
The java.util.Vector class and arrays of type Object[] are also treated
specially in MPG. The template allows you to loop through elements of these
variables. Consider a situation where we are generating the private members
of a Java class. The data will consist of two lists, a list containing the
member names (member_names) and a list containing the types of the
members (data_types):

Model:

// member names
Vector member_names = new Vector();
member_names.addElement(“var1”);
member_names.addElement(“var2”);
member_names.addElement(“var3”);
model.add(“member_names”, member_names);

// data types
Vector data_types = new Vector();
data_types.addElement(“int”);
data_types.addElement(“String”);
data_types.addElement(“double”);
model.add(“data_types”, data_types);

Template:

class_definition()
{

Model member_names, data_types
/*
public class A
{

164 Exploring Net.Commerce Hosting Server

public A() {} */ endl
repeat(member_names, data_types) {

/* private $data_types$ $member_names$; */ endl
}
/*

}*/
}

Output:
public class A
{

public A() {}
private int var1
private String var2
private double var3

}

The preceding example illustrates the use of single value variables as
elements in the Vector. Vectors and arrays may contain any type of object
including other Vectors and Hashtables.

F.3.2.4 Using Java Beans
Java Beans may also be used in the model. The bean properties may be
accessed directly as properties of the variables to which they are mapped.
For example, consider a Java class Merchant that has a property called
refno. The Merchant class would have a method getRefno() that would return
the value of the property. If an object of type Merchant were mapped to the
variable name merchant in the model, it may be referenced in the template as
merchant.refno.

At runtime the template would end up calling Merchant.getRefno() to resolve
the value of merchant.refno.

Parameterless methods may also be invoked on the beans. For example, if
the Merchant class has a method update(). It may be invoked in the template
as merchant.update().

F.3.3 Creating the model from a file

The model may be declared in a file and created using the model parser. The
model parser reads in the file and builds the model that may be used to pass
to a template. The following is the grammar that is used to define the model:

declarations ::= declaration [declaration] ...

declaration ::= var_name = value
A MultiPurpose Code Generation language 165

value :== single_value | table_value | list_value

single_value :== string | number | boolean

table_value :== { declaration [, declaration] ... }

list_value :== { value [, value] ... }

var_name :== letter [letter | digit | _] ...

string :== “characters“ | ‘characters‘ Note: use backslash to obtain special
characters (ie \n)

number :== digits | digits . digits

boolean :== true | false

letter :== a-z A-Z

digits :== digit [digit]...

digit :== 0-9

character :== any valid character

Example:

--
-- The following describes the model used in the introductory sample
--
name={ first=’Sally’, last=”Smith” }
address={ line1 = “2400 Bayview Ave, Apt 23”,
 line2=”North York, Ont”,
 postal_code=”M4N 1JS” }
position=“Development Analyst”
internal_contact= “Dave Johnston”
contact_position=”Human Resources Directory”
date=”June 21, 1997”
cc_list = ["Fred Leary", "Barney Noble"]

F.4 Language Elements

The preceding sections informally introduced some of the elementary syntax
of the language. In this section, we will explore, in detail, the syntax and
directives of the language. Syntactically, the MPG language resembles C,
166 Exploring Net.Commerce Hosting Server

C++ and Java. This resemblance was intentional to make it easier for
experienced programmers to get up and running quickly using MPG.

F.4.1 Lexical Structure

The lexical structure of a programming language is the set of elementary
rules that specify how you write programs in the language. This low level
syntax specifies details such as what variable names look like, comments
and how statements are separated.

F.4.1.1 Case Sensitivity
MPG is a case-sensitive language. Keywords, variable names and procedure
names must be typed with consistent captalization. For example, the variable
x is entirely different from the variable X.

F.4.1.2 Whitespace
The MPG parser ignores spaces, tabs and newlines that appear between
tokens in the templates. Note that this does not include whitespace that
included in strings (delimited by ‘ and “) and whitespace that exists inside
the freeform delimiters (/* and */).

F.4.1.3 Comments
There are two types of comments in MPG. The first type of comment spans a
single line. This comment starts with the comment delimiter --. Anything
appearing after -- on the same line will be treated as a comment and ignored
by the parser. The second type of comment spans multiple lines and is often
useful for removing pieces of code for testing purposes. These types of
comments start with /- and end with -/.

Note that comments are not allowed within literal strings and within the
freeform delimiters.

F.4.1.4 Statement terminators
Many languages such as C/C++ or Java use a semi-colon (;) to act as a
statement terminator. In MPG, there are no statement terminators.
Semi-colons may be added to statements, but will be ignored.

F.4.1.5 Literals
A literal is a data value that appears directly in the template. Literals consist
of numbers, strings and boolean values (true, false). Numbers may be
integers or floating point values. Floating point values use a period as the
decimal separator. Strings are delimited between ‘’ or “” and must occur on a
single line. All characters between the delimiters are part of the string.
A MultiPurpose Code Generation language 167

Special characters may be added to the string by use of the backslash (\).
For example, to add a newline to a string literal, use \n (‘line1\nline2’).
Boolean values true and false may also appear as literals in the template.

F.4.1.6 Free-form text
One element in particular that distinguishes the syntax of MPG from other
programming languages is the ability to add freeform text to a template. Free
form text may include any text (including newlines). Free form text is
delimited by C-style comments /* and */. These delimiters were purposefully
chosen to allow the text to appear in a different color if the programmer is
using a color coded C style editor (which are very common nowadays).

For convenience, statements may be embedded in freeform text by delimiting
them in dollar signs ($). This is often used to substitute a variable inside the
text. The tilda character (~) may be used to escape characters such as the
dollar sign in cases where it is not meant to escape the free form text.

F.4.1.7 Identifiers
An identifier is simply a name. In MPG, identifiers are used to name variables
and functions. The rules for legal identifiers are the similar to that of C. The
first character must be a letter and may be followed by any combination of
letters, numbers and underscores (_). Note that identifiers can only contain
ASCII characters, Unicode ord Latin-1 characters are not allowed.

F.4.1.8 Reserved Words
There are a number of reserved words in MPG. These are words that you
cannot use as identifiers. The following is a list of reserved words in MPG:

if
else
contains
startsWith
endsWith
endl
true
false
Model

Var
Query
Statement
Counter
List
Stack
return
continue
break

repeat
while
before
after
middle
condition
stop
include
168 Exploring Net.Commerce Hosting Server

F.4.2 Declarations

Before any variables may be used in the template, they must be declared.
There are four different types of variables: model variables, SQL queries,
SQL statements and regular variables. Declarations may occur anywhere in
the template and are valid in the scope that they are declared and any
sub-scopes. Variables are declared by starting with a keyword that identifies
the type of variable. These keywords are:

Model

Var

Query

Statement

The keyword is followed by the name of the variable. Multiple variables may
be declared at the same time by separating them with commas(,).

Examples:

Model env, merchant
Var x
Query query1, query2

F.4.2.1 Variable Scope
The scope of a variable defines the section of code where the variable exists.
A scope is defined by a starting { and an ending }. Each procedure has a
different variable scope. Even repeat loops and if statements can have
variable scopes. Any variables that are defined outside of a procedure are
considered ‘global’. This means that they are accessible to all parts of the
template.

F.4.3 Data Types

The MPG template language itself only supports six data types: numbers,
strings and boolean values (true, false), counters, stacks and lists. These are
the types of data that may appear as literals in the template. The external
model, however supports all Java objects. The objects in the external model
may be manipulated through there defined methods and properties or
converted to strings (typically using the toString() method).

F.4.4 Expressions and Operators

Expressions and operators are very similar to what you will find in C/Java.

An expression is a “phrase” that the MPG runtime can evaluate to produce a
value. The simplest expressions are literals or variable names. The value of
A MultiPurpose Code Generation language 169

 1
l

 or

ual
a literal is the literal itself. The value of a variable expression is the value that
the variable refers to. More complex expressions may be constructed using
operators.

Operators are operations that apply to one or more expressions. MPG has
two types of operators: unary operators (apply to a single expression) and
binary operators (apply to two expressions). The following table describes all
of the operators in MPG. Included in this table is the precedence of the
operators. The precedence determines the order in which a set of operations
will occur. In an expression where the precedence is the same for all
operators, it is evaluated from left to right.

P Operator Type Operand Type(s) Action Performed
7 . binary variable, property accesses a property or

method on the variable
7 [] binary list, integer accesses an element in a list
7 [] binary variable, expression accesses property of vari-

able (similar to an associa-
tive array)

8 () unary expression makes the expression the
highest precedence

7 ++ unary variable (number) increments the number by 1
7 ++ unary variable (list) increments the list’s internal

counter
7 -- unary variable (number) decrements the number by
7 -- unary variable (list) decrements the list’s interna

counter
5 +, - binary numbers addition, substraction
6 *, / binary numbers multiplication, division
5 + binary strings concatenation
2 && binary booleans Logical AND
2 || binary booleans Logical OR
4 ! unary boolean Logical complement (NOT)
3 == binary any Test for equality
3 != binary any Test for inequality
3 >, >= binary numbers or strings Greater than, greater than

equal
3 <, <= binary numbers or strings Less than, less than or eq
170 Exploring Net.Commerce Hosting Server

F.4.5 Statements

As described in the preceding section, expressions are phrases that may be
evaluated to produce a value. The general effect of an expression is to
output the value to the print stream and/or produce side effects (such as
moving the interal cursor on a list). To add logical flow to a template you
need to use statements.

F.4.5.1 4.5.1 if statement
The if statement is used to execute statements or expressions conditionally.
This works the way you would expect if you are a C/Java programmer:

Form 1:
 if (expression) statement
 or optionally:
 if (expression) {
 statements
 }

Form 2:
 if (expression) statement
 else statement

3 contains binary strings true if left arg contains right
arg

3 startsWit
h

binary strings true if left arg starts with
right arg

3 endsWith binary strings true if left arg ends with right
arg

1 = binary variable, expression assigns value of expression
to variable

1 += binary variable, expression appends the value of the
expression to the variables
current value (for numbers
the numeric value is added)

7 | binary expression, trans-
formation

applies the given transforma-
tion to the expression

8 new unary type creates a new object (cur-
rently: Stack, Counter, List)
A MultiPurpose Code Generation language 171

 or optionally:
 if (expression) {
 statements
 }
 else {
 statements
 }

If the evaluated expression is true or evaluates to the string value “true”, the
statement (or block of statements) associated with the if is executed. If an
else condition is given and the expression does not evaluate to true (or string
value “true”) the statement (or block of statements) associated with the else
is executed.

Multiple conditional situations can be handled by chaining if statements off of
the else clauses.

Example:

if (env.isNetscape_v2) {

 }
else if (env.isNetscape_v3) {

}
else if (env.isNetscape_v4) {

}
...

F.4.5.2 repeat statement
Looping is achieved through the use of the repeat statement. Options to the
repeat statement consist of two parts.

In the first part, known as the repeat list, the items to iterate over are given.
The items are variables that are usually lists, counters or SQL queries. The
variables in this list must be separated by commas (,). All repeatable
elements in MPG maintain and internal iterator. The first time through the
repeat loop, the internal iterator of each element is reset. This is equivalent
to calling the reset() method on each variable. Through each iteration of the
172 Exploring Net.Commerce Hosting Server

loop, each element increments its internal iterator using the increment()
method (equivalent to the ++ operator). The loop ends when one of the
members in the repeat list reaches its last value of the stop condition (see
below) is reached.

The second part of the repeat statement consists of blocks of code to execute
before and after the loop, code to execute in-between each iteration,
conditions to meet before executing the block of the repeat statement and a
stop condition. These options are separated from the repeat list by using a
vertical bar (|).

The before option consists of a block of code preceded by the keyword
before. The block of code is executed before the first iteration of the loop
and is only performed if the body of the loop is executed at least once.
Similarly, the after option is performed on completion of the loop only if the
body was executed at least once. The middle directive may be used to
perform operations between each iteration. A common use of this option is to
generate an argument list that is separated by commas:

repeat(method.args | before { /*$method.name$(*/ }
 middle /*, */

 after /*); */)
{
 args.name
}

The condition option may be used in order to avoid certain combinations of
the repeat list to occur. The body of the loop will only be executed when the
expression in the condition evaluates to “true”. If in the above example we
wanted to generate code that invokes a method only with the arguments that
are primitive types:

repeat(method.args | before { /*$method.name$(*/ }
 middle /*, */

 after /*); */
condition(isPrimitive(args.type)))

{
 args.name
}

A MultiPurpose Code Generation language 173

Note that the middle block is only executed between the arguments that meet
the condition. If no arguments are primitive, then the before and after blocks
are not executed.

The stop option halts the execution of the loop when its condition evaluates to
true. For example, if it was necessary to generate the method call with the
first three arguments, the following code could be used:

Var i = new Counter(1,1)

repeat(method.args, i | before { /*$method.name$(*/ }
 middle /*, */

 after /*); */
 stop(i == 4))

{
 args.name
}

F.4.5.3 while loop
While loops may be used to repeat a segment of code while a certain
condition remains true. This is used the same as the while loop in C.

Example:

while(i > 0) {
 i = i-1

 }

F.4.5.4 return statement
The return statement is useful for terminating the execution of a procedure.
As soon as a procedure encounters a return statement, the procedure ends
and returns to its caller.

F.4.5.5 break statement
The break statement is useful for terminating the execution of a loop. As
soon as a loop encounters a break statement, the loop terminates.

F.4.5.6 continue statement
The continue statement is useful for terminating the current iteration of a
loop. As soon as a loop encounters a continue statement, the loop starts its
next iteration.
174 Exploring Net.Commerce Hosting Server

)

F.4.6 Procedures

A procedure is a piece of MPG code that is defined once in a template and
can be executed many times. Procedures may be passed arguments
specifying the value(s) that the procedure is to operate upon. Procedures are
defined as follows:

procedure_name(arg1, arg2)
{
 <procedure body>
}

Procedures are invoked by following the procedure’s name with an optional
comma-separated list of arguments within parentheses. The following are
examples of procedure invocations:

display_category()
x = generate_select()
redirect(“http://www.mystore.com/” + subdir + “/index.html”)

The second example illustrates how to intercept the output of a procedure.
By default the output of a procedure (ie the code that it generates) is sent to
the output stream. By assigning the procedure call to a variable (x =
generate_select()) the output is intercepted (in this case placed in variable
x).

F.4.7 Transformations

Transformations are a set of utility functions that are used for formatting
(transforming) the output. A transformation may be applied to an expression
by placing a vertical bar (|) after it, the name of the transformation and the
argument list. The argument list is dependant on the transformation.

Any number of transformations may be applied to an expression by chaining
them together and separating them by vertical bars (|). They will be
evaluated in left to right order and the result of each transformation is passed
to the next transformation in the list.

Example:

member.name|lowerCase()|change(“get”, “set”)|upperCase(4,1

The following list describes all of the transformations:

Transformation Description
A MultiPurpose Code Generation language 175

upperCase() converts expression to upper case
upperCase(pos) converts expression to upper case

starting at the given position
upperCase(pos, length) converts expression to upper case

starting at the given position for the
given length

lowerCase() converts expression to lower case
lowerCase(pos) converts expression to lower case

starting at the given position
lowerCase(pos, length) converts expression to lower case

starting at the given position for the
given length

substring(pos) returns the portion of the expression
start at the given position

substring(pos, length) returns the portion of the expression
start at the given position for the given
length

isUpperCase() Tests to see if the expression is all
upper case

isUpperCase(pos) Tests to see if the expression is all
upper case starting at the given posi-
tion

isUpperCase(pos, length) Tests to see if the expression is all
upper case starting at the given posi-
tion for the given length

isLowerCase() Tests to see if the expression is all
lower case

isLowerCase(pos) Tests to see if the expression is all
lower case starting at the given posi-
tion

isLowerCase(pos, length) Tests to see if the expression is all
lower case starting at the given posi-
tion for the given length

isDigit() Tests to see if the expression is all dig-
its

isDigit(pos) Tests to see if the expression is all dig-
its starting at the given position
176 Exploring Net.Commerce Hosting Server

isDigit(pos, length) Tests to see if the expression is all dig-
its starting at the given position for the
given length

remove(pos) Removes the substring starting at the
given position

remove(pos, length) Removes the substring starting at the
given position for the given length

insert(str) Inserts the given string at the begin-
ning of the expression

insert(str, pos) Inserts the given string at the given
position

change(pattern, str) Replaces all occurences of the pattern
with the replacement string str

change(pattern, str, max) Replaces up to max occurences of the
pattern with the replacement string str.

changeToken(pattern, str) Tokenizes the string and replaces all
tokens matching pattern with the
replacement token str. (TBD)

changeToken(pattern, str, max) Tokenizes the string and replaces up to
max all tokens matching pattern with
the replacement token str.

length() Returns the length of the string as an
integer.

strip() Strips leading and trailing whitespace
strip(chars) Strips leading and trailing characters

in the set chars
stripLeading() Strips leading whitespace
stripLeading(chars) Strips leading characters in the set

chars
stripTrailing() Strips trailing whitespace
stripTrailing(chars) Strips trailing characters in the set

chars
occurencesOf(pattern) Returns the number of occurences of

the specified pattern
indexOf(pattern) Returns the index of the given pattern

(index starts at 0)
reverse(string) Reverses a string
A MultiPurpose Code Generation language 177

round() Rounds the number to an integer
round(precision) Rounds the number to the given num-

ber of decimal places.
floor() Returns the floor of the number (0

decimal places)
floor(precision) Returns the floor of the number to the

given number of decimal places.
ceil() Returns the ceiling of the number (0

decimal places)
ceil(precision) Returns the ceiling of the number to

the given number of decimal places.
abs(number) Returns the absolute value of the

given number
format(locale) Formats a number in the given locale
format(precision) Formats a number to have the given

precision (appends 0s if necessary)
format(precision, locale) Formats a number to have the given

precision (appends 0s if necessary) in
the given locale

toNumber() Converts the expression to a number
(using the default locale)

toNumber(locale) Converts the expression to a number
using the given locale

toDouble(locale) Converts the expression to a double
using the given locale

toInteger(locale) Converts the expression to a integer
using the given locale

toBoolean() Converts the expression to a boolean
toString() Converts the expression to a string
toTimestamp(value) Converts the value to a timestamp. If

value is a number, it contructs a
Timestamp object with the long value,
otherwise it assumes the string value
is in the format:
YYYY-MM-DD-HH.MM.SS.SSSSSS
178 Exploring Net.Commerce Hosting Server

toTime(value) Converts the value to a Time. If value
is a number, it contructs a Time object
with the long value, otherwise it
assumes the string value is in the for-
mat: HH.MM.SS

toDate(value) Converts the value to a java.sql.Date.
If value is a number, it contructs a
Date object with the long value, other-
wise it assumes the string value is in
the format: YYYY-MM-DD

toJavaScript(value) Converts the value so it may be
assigned to a javascript variable
(replaces ’ with \’, \n with \\n, " with
\\")

format_date() Formats a date using the default locale
format_date(locale) Formats a date using the given locale
format_time() Formats a time using the default locale
format_time(locale) Formats a time using the given locale
format_timestamp() Formats a timestamp using the default

locale
format_timestamp(locale) Formats a timestamp using the given

locale
currency(locale) Formats the number as a currency for

the given locale
currency_HTML(locale) same as currency, formats for HTML

display
currencySET(symbol) Formats the number for the given SET

symbol
currencySET_HTML(symbol) Same as currencySET, formats for

HTML display
currencyNoSymbols(locale) Same as currency, removes currency

symbols.
currencyNoSymbolsSET(set-
Code)

Same as currencySET, removes cur-
rency symbols

currencyNoSymbolsSET_HTML
(setCode)

Same as currencyNoSymbolsSET, for-
mats for HTML display
A MultiPurpose Code Generation language 179

F.4.8 4.10 Including other templates

TBD

Code from other templates may be reused by including them in the current
template. This allows you to reference other procedures or global variables
defined outside of the template. The following is an example of how you
would include another template:

include “common/address_formats.tem”

The include directive finds the given template by searching the template
path. This is a file system path (or paths) that is searched to find the given
template. Sub-directories may be searched by specifying the subdirectory in
the include directory (as shown). The directory separator is /. This is the
same across all platforms (including Windows platforms).
180 Exploring Net.Commerce Hosting Server

Appendix G. Customization of NCHS on Windows NT

G.1 Customizing store creation process on Windows NT

The following steps will guide you in adding this customization to
Net.Commerce Hosting Server:

1. Make a copy of the Store Information form to be inserted into the store
creation flow.

The Store Information form layout is contained in the StoreInfo.tem file.
This file defines how the form looks, what text is used and the actions the
form performs. A copy of this file will be modified and inserted into the
store creation flow.

Make a copy of the StoreInfo.tem file located in the
<drive>:\ibm\NetCommerce3\Tools\mpg_templates\nchs\mtool\ directory,
(where <drive> is the letter of the drive where Net.Commerce is installed).
Name this copy Register2.tem.

2. Modify the Store Creation form to present the new Store Information
form after it is submitted.

The Store Creation form layout is contained in the Register.tem file. This
file defines how the form looks, what text is used and the actions the form
performs. This file will be modified to call the new Store Information form
instead of the store creation command.

Open the file Register.tem in a text editor and comment out the following
line, by adding -- to the beginning of each line. This will disable the call to
the store creation command by this form.

-- /*

--<SCRIPT>top.location.href=’http://$env.hostname$/servlet/MerchantAdmi

n?PROCESS=CTnchs.mtool.Filter&XMLFile=nchs.mtool.merchantTool.xml&start

ingFolder=getStartedFolder’; </SCRIPT>

Make sure that the file being modified in step 2 is Register.tem and the
file being modified in step 3 is Register2.tem.

Note:
© Copyright IBM Corp. 1999 181

-- */

To direct this form to the new Store Information form, add the following
line just above the commented out line:

/*

<SCRIPT>location.href=’http://$env.hostname$/servlet/MerchantAdmin?DISP

LAY=CTnchs.mtool.Register2’; </SCRIPT>

*/

Save this file and exit.

3. Modify the new Store Information form to call the store creation
command.

Open the file Register2.tem in a text editor and comment out the following
line, by adding -- to the beginning of each line. This will disable the
displaying of the merchant tool Get Started tab.

-- /*

--<SCRIPT>window.location="http://$env.hostname$/servlet/MerchantAdmin?

DISPLAY=CTnchs.mtool.StoreInfoConfirm"; </SCRIPT>

-- */

In order to direct the new Store Information form to call the store creation
command, add the following line after the commented out line:

/*

<SCRIPT>top.location.href=’http://$env.hostname$/servlet/MerchantAdmin?

PROCESS=CTnchs.mtool.Filter&XMLFile=nchs.mtool.merchantTool.xml&startin

gFolder=getStartedFolder’; </SCRIPT>

*/

To display the correct error messages during the new step in the store
creation process, find the line containing the
$mtoolNLS.storeInfoErrorMandatoryTop$ variable and change it to
$mtoolNLS.errorMandatoryTop$, then find the line containing the
$mtoolNLS.storeInfoErrorMandatoryEnd$ variable and change it to
$mtoolNLS.errorMandatoryEnd$.

In order to disable the call to the old task, comment out the following line
by adding -- to the beginning of the line:
182 Exploring Net.Commerce Hosting Server

-- <INPUT TYPE=hidden NAME="PROCESS" VALUE="CTnchs.mtool.StoreInfo">

Now add a similar line beneath the commented out line to call the new
Register2 task. This tells the form which task to use for processing.

<INPUT TYPE=hidden NAME="PROCESS" VALUE="CTnchs.mtool.Register2">

Save this file and exit.

4. Add the new store creation step to the mtoolTasks.xml file so that it will be
recognized by Net.Commerce Hosting Server.

The mtoolTasks.xml file contains a listing of the xml tasks that
Net.Commerce Hosting Server recognizes. This file contains the
necessary information about each task such as file locations, required
parameters and access controls.

Open the mtoolTasks.xml file in the
<drive>:\ibm\NetCommerce3\Tools\config\nchs\ directory, (where <drive>
is the letter of the drive where Net.Commerce is installed), and add the
following lines at the bottom of the file, just above the </taskConfig> line.
This will register the new step in the store creation process with
Net.Commerce Hosting Server and direct it to the proper files.

<task name="CTnchs.mtool.Register2"

template="nchs/mtool/Register2.tem"

dbSessionRequired="true"

requiredProcessParams="contactEMail1"/>

If the CSP wants to require other fields in addition to the e-mail field, they
can be added to the requiredProcessParams list. Save this file and exit.

5. Stop and restart the Net.Commerce instance, administrator server and
webserver as directed in "Installing and Getting Started Guide",
GC09-2808-01. Figure 42 on page 184 and Figure 43 on page 185 show
the new store creation flow.
Customization of NCHS on Windows NT 183

Figure 42. Store creation form.
184 Exploring Net.Commerce Hosting Server

Figure 43. Newly added Store Information form.

G.2 Restricting creation of merchant store on Windows NT

1. Make store creation access available for purchase from your Services
Store site by adding a store creation access product to your catalog.

Open the cspsite and click on Manage Store. Log on as the Commerce
Hosting Server, (CHS), services store manager, (default logon and
password is chsservicesstore). as shown in Figure 44 on page 186.
Customization of NCHS on Windows NT 185

Figure 44. CHS services store logon screen.

Add an item to the catalog for store creation access by clicking Edit Catalog.
Name the new item "Store Creation Access". Before exiting the Catalog
Editor, be sure to write down the url Add to Shopping Cart link. It will be
needed in the next step. To obtain this url, click once on the newly created
Store Creation Access product and click Remote Content, as shown in
Figure 45 on page 187. Copy the url under Add to Shopping Cart link.
186 Exploring Net.Commerce Hosting Server

Figure 45. Obtaining the Add to Shopping Cart link.

In addition to needing this url for the next step, there are two pieces of
information that you will need in later steps that should be obtained at this
time. In the url, there are name/value pairs. Extract the store reference
number and the product SKU number from these name/value pairs. For
example:

http://<hostname>/servlet/ShoppingCart?merchant.refno=XXX&product.SKU=YYY

In this example, XXX, and YYY are the store reference number and product
SKU number, respectively.

Exit the Catalog Editor and then publish the CHS Services Store by clicking
on Publish Store.

2. Change the logic of the store creation process so that a check for access
privilege is made prior to allowing access to store creation.

When the prospective merchant clicks Create Store the objective is to
only allow access to store creation if it has been purchased. The Create
Store link calls a static html file will displays the Create Store form. To
Customization of NCHS on Windows NT 187

disable store creation access until access has been purchased, this link
will be changed to call macro instead. This macro will check to see if store
creation access has been purchased and will then display the appropriate
screen.

To create a macro that checks for store creation privileges, open a text
editor and type the following, (adding the Add to Shopping Cart link
where instructed):

%{===

The sample Templates, HTML and Macros are furnished by IBM as simple

examples to provide an illustration. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot

guarantee reliability, serviceability or function of these programs. All

programs contained herein are provided to you "AS IS".

The sample Templates, HTML and Macros may include the names of

individuals, companies, brands and products in order to illustrate them

as completely as possible. All of these are names are fictitious and

any similarity to the names and addresses used by actual persons or

business enterprises is entirely coincidental.

Licensed Materials - Property of IBM

5697-D24

(c) Copyright IBM Corp. 1998, 1999. All Rights Reserved

US Government Users Restricted Rights - Use, duplication or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp

===%}

%function(dtw_odbc) check_status() {

SELECT shfield2, shlogid

FROMshopper

WHERE shlogid=’$(SESSION_ID)’

%REPORT {

%ROW {

 @DTW_assign(STATUSFIELD, V_shfield2)

%}

%}
188 Exploring Net.Commerce Hosting Server

%}

%{==%}

%{ HTML Report Section %}

%{==%}

%HTML_REPORT{

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=iso-8859-1">

<meta NAME="keywords"

CONTENT="Net.Commerce, Commerce Hosting Server, internet, internet

service provider, web hosting, dial up access">

<title>IBM Net.Commerce Hosting Server</title>

</head>

<body>

@check_status()

%if (STATUSFIELD != "1")

<TABLE>

<TR>

<TD>To create a store, click the link below and purchase access for only

$25!</TD>

</TR>

<TR>

<TD>Please click <A href="*** Enter Add to Shopping Cart url here

***">here

to purchase store creation access.</TD>

</TR>

</TABLE>

%else

<script Language="JavaScript">

var launch_str = "Please be patient. The merchant tool will be launched

in another window.";

var unsupported_browser_text1 = "The merchant tool requires either:";

var unsupported_browser_item1 = "Netscape Navigator 4.06 or higher";

var unsupported_browser_item2 = "Internet Explorer 4.01 or higher";

var unsupported_browser_text2 = "Install the correct browser before

creating a store.";

function create_store() {
Customization of NCHS on Windows NT 189

if ((navigator.appName.indexOf("Netscape") > -1 &&

parseFloat(navigator.appVersion) >= 4.06) ||

(navigator.appName.indexOf("Microsoft") > -1 &&

parseFloat(navigator.appVersion) >= 4.0)) {

document.write("<p>" + launch_str+ "
");

var url = "/servlet/MerchantAdmin?";

var target = window.open("", "MerchantTool",

"resizable=yes,scrollbars=yes,status=yes,width=750,height=500,screen=0,

screenY=0,left=0,top=0");

if (target.document.URL.indexOf(url) == -1)

target.location.href = url + "GOTO=Banner&body=RegisterPage";

target.focus();

} else {

document.write("<p>" + unsupported_browser_text1);

document.write("");

document.write("" + unsupported_browser_item1 + "");

document.write("" + unsupported_browser_item2 + "");

document.write("");

document.write(unsupported_browser_text2);

}

}

create_store();

</script>

%endif

Please send all

inquiries to: webmaster@CHSNet.com

Site comments: webmaster@CHSNet.com

© 1998, IBM Net.Commerce for CHS.

</p>

</body>

</html>

%}

Save this file as creation_access.d2w in the
190 Exploring Net.Commerce Hosting Server

<drive>:\ibm\NetCommerce3\macro\en_US\ncadmin\sitemgr\ directory,
(where <drive> is the letter of the drive where Net.Commerce is installed).

3. Edit the navigation.html file to change the link for Create Store.

The Create Store link in the navigation.html file calls a static html file will
displays the Create Store form. To disable store creation access until
access has been purchased, this link will be changed to call the newly
created creation_access.d2w macro instead.

Use a text editor to open the file navigation.html in the
<drive>:\ibm\NetCommerce3\html\en_US\cspsite\ directory, (where
<drive> is the letter of the drive where Net.Commerce is installed).

In order to change the Create Store link, comment out the link to the
create_store.html file by placing HTML comment tags around this section:

<!-- create store -->

<!-- <TR>

<TD><IMG NAME="item6" SRC="/CHS/images/bullet_blank.gif" WIDTH=5

HEIGHT=5 ALT="" BORDER=0></TD>

<TD NOWRAP> <A

HREF="javascript:go(6,’/cspsite/create_store_banner.html’,’/cspsite/cre

ate_store.html’)" onMouseOver="on(6); status=’create store’; return

true;" onMouseOut="off(6); status=’’;">create store</TD>

</TR>

<TR>

<TD></TD>

<TD><IMG SRC="/CHS/images/separator.gif" WIDTH=122 HEIGHT=1 ALT=""

BORDER=0></TD>

</TR> -->

Replace this commented out section with a new, similar section containing
a link to the creation_access.d2w macro:

<TR>

<TD><IMG NAME="item6" SRC="/CHS/images/bullet_blank.gif" WIDTH=5

HEIGHT=5 ALT="" BORDER=0></TD>

<TD NOWRAP> <A HREF="javascript:go(6,

’/cspsite/create_store_banner.html’,

’/cgi-bin/ncommerce3/ExecMacro/ncadmin/sitemgr/creation_access.d2w/repo

rt?merfnb=$env.merchant_id$’)" onMouseOver="on(6); status=’create

store’; return true;" onMouseOut="off(6); status=’’;">create
Customization of NCHS on Windows NT 191

store</TD>

</TR>

<TR>

<TD></TD>

<TD><IMG SRC="/CHS/images/separator.gif" WIDTH=122 HEIGHT=1 ALT=""

BORDER=0></TD>

</TR>

Save the navigation.html file and exit. Figure 46 shows the new screen
that will appear when a merchant clicks Create Store.

Figure 46. New store creation access screen.

4. Modify the ord_ok.d2w macro to enable store creation after access has
been purchased.

The ord_ok.d2w macro displays the order confirmation screen. When
store creation access has been purchased, the shfield2 field in the
192 Exploring Net.Commerce Hosting Server

shopper table should be set to 1 to indicate that the prospective merchant
has purchased access and can therefore be granted access to store
creation.

This update can be performed by checking the list of products purchased
in the product list and if any of those products is the store creation access
product, the shfield2 field is set to 1 indicating access has been
purchased. After this update to the database has been performed, a link to
the store creation command will be displayed so that the merchant can
then create their store. This link is only available when store creation
access has been purchased and is only active for that particular session.
This prevents a registered merchant from returning to the cspsite and
creating additional stores.

To add this functionality to the ord_ok.d2w macro, open this file which is
located in the <drive>:\ibm\NetCommerce3\macro\en_US\<ref num>\
directory, (where <drive> is the drive on which Net.Commerce is installed
and <ref num> is the reference number of the CHS Services Store obtained
in Step 1).

In this file, make the following changes which appear in boldface, (replace
all <ref num> occurrences with the CHS Services Store reference number).

%include "<ref num>\include.inc"

%include "<ref num>\new_ord_ok.d2w"

Save this file and exit. The changes made to the ord_ok.d2w macro
instruct Net.Commerce to include a new macro called new_ord_ok.d2w.
This macro will be very similar to the existing ord_ok.d2w macro in the
\ibm\NetCommerce3\macro\common\CSPstoremodel\ directory except for
the addition of the logic to update the database with a flag to grant store
creation access.

In order to create this new macro, make a copy of the ord_ok.d2w macro
in the <drive>:\ibm\NetCommerce3\macro\common\CSPstoremodel\
directory, (where <drive> is the drive on which Net.Commerce is installed),
and name this copy new_ord_ok.d2w. Move this new copy to the
<drive>:\ibm\NetCommerce3\macro\en_US\<ref num>\ directory, (where
<drive> is the drive on which Net.Commerce is installed and <ref num> is
the reference number of the CHS Services Store). Open the
new_ord_ok.d2w macro file in a text editor and make the following
additions/changes which appear in boldface. Insert the product SKU
number obtained in Step 1 where instructed.
Customization of NCHS on Windows NT 193

%{==

The sample Templates, HTML and Macros are furnished by IBM as simple

examples to provide an illustration. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot

guarantee reliability, serviceability or function of these programs. All

programs contained herein are provided to you "AS IS".

The sample Templates, HTML and Macros may include the names of

individuals, companies, brands and products in order to illustrate them

as completely as possible. All of these are names are fictitious and

any similarity to the names and addresses used by actual persons or

business enterprises is entirely coincidental.

Licensed Materials - Property of IBM 5697-D24 (c) Copyright IBM Corp.

1998, 1999. All Rights Reserved US Government Users Restricted

Rights - Use, duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM Corp

==%}

%INCLUDE "/CSPstoremodel/translation_text.inc"

%INCLUDE "/CSPstoremodel/format_pricedefinition.inc"

%INCLUDE "$(DirectoryName)/navbar.inc"

%define {

SHOWSQL="NO"

CreationFlag="False"

%}

%INCLUDE "ord_taxshiprules.inc"

%function(dtw_odbc) UPDATE_CREATION_ACCESS(){

UPDATE shopper

SET shfield2 = ’1’

WHERE shlogid = ’$(SESSION_ID)’

%}

%function(dtw_odbc) GET_ORBILLTO (){

SELECT orbllto

FROM orders

WHERE orrfnbr = $(order_rn)

%REPORT {

%ROW {
194 Exploring Net.Commerce Hosting Server

@dtw_assign(BILLING_ADDRESS_RN, V_orbllto)

%}

%}

%MESSAGE{

100: { %} :CONTINUE

default: { ERROR in GET_ORBLLTO %}

%}

%}

%function(dtw_odbc) IS_SET ()

{

SELECT ompaymthd, setsstatcode, setsfailtype

FROM ordpaymthd, setstatus, orders

WHERE omornbr = $(order_rn) and setsornbr = $(order_rn) and orrfnbr =

setsornbr and orshnbr = $(SESSION_RN)

%REPORT {

<CENTER>

<TABLE width=530 CELLPADDING=4 CELLSPACING=0 BORDER=0 ALIGN="center">

<TR>

<TD ALIGN="left" VALIGN="center">

%ROW {

@dtw_assign(BILLING_ADDRESS_RN, V_orbllto)

@dtw_assign(PAYMENT_METHOD, V_ompaymthd)

$(TXT_THANKYOU)

%INCLUDE "ord_set_returncodes.inc"

%}

</TD>

</TR>

</TABLE>

%}

%MESSAGE{

100: { %} :CONTINUE

default: { ERROR in IS_SET %}

%}

%}

%function(dtw_odbc) GET_SHOPPER_TYPE() {

select shshtyp

from shopper

where shrfnbr = $(SESSION_RN)
Customization of NCHS on Windows NT 195

%REPORT{

%ROW{

 @DTW_assign(SHOPPER_TYPE, V_shshtyp)

%}

%}

%MESSAGE{

default: { ERROR in GET_SHOPPER_TYPE %}

%}

%}

%function(dtw_odbc) SHOPPER_INFO() {

select sarfnbr, salname, safname, saaddr1, saaddr2, sacity, sastate,

sazipc, sacntry

from shaddr

where sashnbr=$(SESSION_RN) and sarfnbr=$(BILLING_ADDRESS_RN)

%REPORT{

<CENTER>

<TABLE width=530 CELLSPACING=0 CELLPADDING=4 BORDER=0 ALIGN="center">

%ROW{

%IF (($(PAYMENT_METHOD) != "SET") && ($(PAYMENT_METHOD) != "SETNV"))

<TR>

<TD COLSPAN=3>

$(TXT_THANKYOU)

 </TD>

 </TR>

 <TR>

<TD COLSPAN=3>

$(CONF_MSG)

</TD>

</TR>

%ENDIF

<TR><TD>

</TD></TR>

<TR>

 <TD COLSPAN=3 ALIGN="center" bgcolor="#E0E0E0">

$(LBL_ORDERNUMBER) : $(order_rn)

%IF (SHOPPER_TYPE == "G")Z---

$(LBL_CUSTOMERCODE) : $(SESSION_ID)

%ENDIF
196 Exploring Net.Commerce Hosting Server

</TD>

</TR>

<TR><TD>
</TD></TR>

 <TR>

<TD>

$(TXT_MAILTO)

</TD>

<TD width=10></TD>

<TD>

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(TXT_MAILSHIPTO)</FO

NT>

</TD>

</TR>

 <TR>

<TD BGCOLOR=white width=260 VALIGN=top>

%INCLUDE "/CSPstoremodel/address_static.inc"

</TD>

<TD width=10></TD>

%}

%}

%MESSAGE{default: { ERROR in SHOPPER_INFO %} :CONTINUE

%}

%}

%function(dtw_odbc) SHOPPER_SHIPTO_INFO() {

select salname, safname, saaddr1, saaddr2, sacity, sastate, sazipc,

sacntry

from shaddr, shipto

where stornbr=$(order_rn) and stsanbr=sarfnbr

%REPORT{

<TD BGCOLOR=white width=260 VALIGN=top>

%INCLUDE "/CSPstoremodel/address_static.inc"

</TD>

</TR>
Customization of NCHS on Windows NT 197

</TABLE>

</CENTER>

%}

%MESSAGE{default: { ERROR in SHOPPER_SHIPTO_INFO %}

%}

%}

%function(dtw_odbc) DISPLAY_DETAILS_LIST() {

select strfnbr, stsanbr, stshnbr, stmenbr, stprnbr, stprice, stquant,

stcpcur, prrfnbr, prnbr, prldesc2, prsdesc, salname, safname

from shipto, product, shaddr

where stshnbr=$(SESSION_RN) and stmenbr=$(MerchantRefNum) and

stprnbr=prrfnbr and stornbr=$(order_rn)

and stsanbr=sarfnbr

order by stmenbr, stsanbr, strfnbr

%REPORT{

<CENTER>

<TABLE width=530 CELLPADDING=4 CELLSPACING=0 BORDER=0 ALIGN="center">

<TR>

 <TD ALIGN=left VALIGN=top><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_PRODUCTNUM)

</TD>

<TD ALIGN=left VALIGN=top><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_PRODUCTNAME)</TD>

<TD ALIGN=middle VALIGN=top><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_QUANTITY)</

TD>

 <TD ALIGN=right VALIGN=top><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_PRODUCTPRICE)

%IF (CurDescription != null)

[$(CurDescription)]

%ENDIF

</TD>

<TD ALIGN=right VALIGN=top><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_SUBTOTAL)

%IF (CurDescription != null)

[$(CurDescription)]

%ENDIF

</TD>
198 Exploring Net.Commerce Hosting Server

</TR>

<TR><TD colspan=5><HR></TD></TR>

%ROW{

<TR>

@DTW_FORMAT(V_stprice, "", CurDecimalPlaces, FORMATTEDPRODPRICE)

@DTW_MULTIPLY(V_stquant, V_stprice, SUB_TOT)

@DTW_FORMAT(SUB_TOT, "", CurDecimalPlaces, FORMATTEDSUBTOTPRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDSUBTOTPRICE)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDSUBTOTPRICE,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDPRODPRICE)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDPRODPRICE,OUT_PRICE)

%if ($(V_prnbr) == "**insert product SKU number here**")

@DTW_ASSIGN(CreationFlag, "True")

%endif

 <TD ALIGN=left><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(V_prldesc2) - </TD>

<TD ALIGN=left>

$(V_prsdesc)</TD>

<TD ALIGN=middle>

$(V_stquant)</TD>

 <TD ALIGN=right><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDPRODP

RICE)$(CurPostfix)

%IF (CurDescription == null)

$(V_stcpcur)

%ENDIF

</TD>

 <TD ALIGN=right ALIGN="right"><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSU

BTOTPRICE)$(CurPostfix)

%IF (CurDescription == null)

$(V_stcpcur)

%ENDIF

</TD>

</TR>

<TR><TD HEIGHT=5></TD></TR>

%}

<TR><TD colspan=5><HR></TD></TR>

%}
Customization of NCHS on Windows NT 199

%MESSAGE{

100 : {
<FONT

SIZE=3>$(MSG_ORDERLIST_EMPTY)%}:continue

default: {ERROR : Problem with DISPLAY_DETAILS_LIST function %}

%}

%}

%function(dtw_odbc) DISPLAY_CHARGES_MerchantTax() {

select distinct orprtot, ortxtot, orshtot, orshtxtot, orcpcur,

(oytax1+oytax2+oytax3+oytax4+oytax5+oytax6) as mttax

from orders, orderpay, shaddr

whereormenbr=$(MerchantRefNum) and oysanbr=sarfnbr and

orrfnbr=$(order_rn) and oyornbr=$(order_rn)

%REPORT{

%ROW{

@DTW_FORMAT(V_orprtot, "", CurDecimalPlaces, FORMATTEDSUBTOTPRICE)

@DTW_FORMAT(V_ortxtot, "", CurDecimalPlaces, FORMATTEDTAXTOT)

@DTW_FORMAT(V_orshtot, "", CurDecimalPlaces, FORMATTEDSHIPTOT)

@DTW_FORMAT(V_orshtxtot, "", CurDecimalPlaces, FORMATTEDSHIPTAXTOT)

@DTW_ADD(V_orprtot, V_ortxtot, total)

@DTW_ADD(total, V_orshtot, total)

@DTW_ADD(total, V_orshtxtot, total)

@DTW_FORMAT(total, "", CurDecimalPlaces, FORMATTEDTOTPRICE)

%IF (ConvMultOrDiv == "M")

@DTW_MULTIPLY(FORMATTEDTOTPRICE, ConvFactor, CONVPRICE)

@DTW_FORMAT(CONVPRICE, "", ConvCurDecimalPlaces, CONVFORMATTEDPRICE)

%ELIF (ConvMultOrDiv == "D")

@DTW_DIVIDE(FORMATTEDTOTPRICE, ConvFactor, CONVPRICE)

@DTW_FORMAT(CONVPRICE, "", ConvCurDecimalPlaces, CONVFORMATTEDPRICE)

%ENDIF

@DTW_ASSIGN(IN_PRICE,FORMATTEDSUBTOTPRICE)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDSUBTOTPRICE,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDTAXTOT)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDTAXTOT,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDSHIPTOT)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDSHIPTOT,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDSHIPTAXTOT)

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDSHIPTAXTOT,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,FORMATTEDTOTPRICE)
200 Exploring Net.Commerce Hosting Server

%INCLUDE "/CSPstoremodel/format_price.inc"

@DTW_ASSIGN(FORMATTEDTOTPRICE,OUT_PRICE)

@DTW_ASSIGN(IN_PRICE,CONVFORMATTEDPRICE)

%INCLUDE "/CSPstoremodel/format_convprice.inc"

@DTW_ASSIGN(CONVFORMATTEDPRICE,OUT_PRICE)

<TR>

<TD ALIGN="right" COLSPAN=4><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_SUBTOTAL)

</TD>

 <TD ALIGN="right"><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSUBTO

TPRICE)$(CurPostfix)

%IF (CurDescription == null)

$(V_orcpcur)

%ENDIF

</TD>

</TR>

<TR>

<TD ALIGN="right" COLSPAN=4><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_TAX)

</TD>

 <TD ALIGN="right">

%IF (TAXRULE_EXISTS == "YES" && CurDescription == null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDTAXTO

T)$(CurPostfix) $(V_orcpcur)

%ELIF (TAXRULE_EXISTS == "YES" && CurDescription != null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDTAXTO

T)$(CurPostfix)

%ELSE

%ENDIF

</TD>

</TR>

<TR>

<TD ALIGN="right" COLSPAN=4><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_SHIPPING)

</TD>

 <TD ALIGN="right">

%IF (SHIPRULE_EXISTS == "YES" && CurDescription == null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSHIPT
Customization of NCHS on Windows NT 201

OT)$(CurPostfix) $(V_orcpcur)

%ELIF (SHIPRULE_EXISTS == "YES" && CurDescription != null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSHIPT

OT)$(CurPostfix)

%ELSE

%ENDIF

</TD>

</TR>

<TR>

<TD ALIGN="right" COLSPAN=4><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_SHIPPINGTAX)

</TD>

 <TD ALIGN="right">

%IF (SHIPRULE_EXISTS == "YES" && CurDescription == null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSHIPT

AXTOT)$(CurPostfix) $(V_orcpcur)

%ELIF (SHIPRULE_EXISTS == "YES" && CurDescription != null)

<FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDSHIPT

AXTOT)$(CurPostfix)

%ELSE

%ENDIF

</TD>

</TR>

<TR>

<TD ALIGN="right" COLSPAN=4><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(LBL_TOTAL)

</TD>

 <TD ALIGN="right" BGCOLOR="white"><FONT

SIZE=$(DONOTTRANSLATE_FORMAT_FONTSIZETEXT)>$(CurPrefix)$(FORMATTEDTO

TPRICE)$(CurPostfix)

%IF (CurDescription == null)

$(V_orcpcur)

%ENDIF

</TD>

</TR>

<TR><TD HEIGHT=5></TD></TR>

<TR><TD>
</TD></TR>

<TR BGCOLOR="#E0E0E0">
202 Exploring Net.Commerce Hosting Server

<TD COLSPAN=5 ALIGN=center>

$(TXT_YOUCHARGED)

%IF (ConvMultOrDiv == "")

$(CurPrefix)$(FORMATTEDTOTPRICE)$(CurPostfix) $(V_orcpcur)

%ELSE

$(CurPrefix)$(FORMATTEDTOTPRICE)$(CurPostfix) $(CurDescription)

[$(ConvCurPrefix)$(CONVFORMATTEDPRICE)$(ConvCurPostfix)

$(ConvCurDescription)]

%ENDIF

</TD>

</TR>

%}

 </TABLE>

 </CENTER>

%}

%MESSAGE{

100: { No Information Available. %} : continue

 default: { ERROR in DISPLAY_CHARGES_MerchantTax() %}:CONTINUE

%}

%}

%function(dtw_odbc) GET_CONF_MESSAGE() {

SELECT omornbr,ompaymthd,ompaydevc,pmentinst2,pmentinst4

FROM ordpaymthd,merpayinfo

WHERE paymerid=$(MerchantRefNum) and omornbr=$(order_rn)

%REPORT {

%ROW {

%if (V_ompaydevc == "OFF-LINE")

@DTW_assign(CONF_MSG, V_pmentinst2)

%else

@DTW_assign(CONF_MSG, V_pmentinst4)

%endif

%}

%}

%MESSAGE{

default: {error occurred in

GET_CONF_MESSAGE()%}:CONTINUE

%}

%}
Customization of NCHS on Windows NT 203

%{==%}

%{ HTML Report Section

%{==%}

%HTML_REPORT{

<HTML>

<HEAD>

<META HTTP-EQUIV=Expires CONTENT="Mon, 01 Jan 1996 01:01:01 GMT"></HEAD>

<TITLE>$(LongStoreName) [$(TXT_TITLE_ORDEROK)]</TITLE>

<BODY BACKGROUND="$(BodyImage)" BGCOLOR="$(BodyColor)"

TEXT="$(TextCol)" LINK="$(LinkCol)" VLINK="$(VLinkCol)"

ALINK="$(ALinkCol)">

%IF (CurDecimalPlaces == "")

@DTW_assign(CurDecimalPlaces, "2")

%ENDIF

%INCLUDE "/CSPstoremodel/assign_priceseparators.inc"

<CENTER>

<TABLE width=530 CELLPADDING=4 CELLSPACING=0 BORDER=0 ALIGN="center">

<TR>

<TD ALIGN="center" VALIGN="center">

<FONT

COLOR=$(TextCol)><H$(DONOTTRANSLATE_FORMAT_FONTSIZETITLE)>$(TXT_TITLE_O

RDEROK)</H$(DONOTTRANSLATE_FORMAT_FONTSIZETITLE)>

</TD>

</TR>

</TABLE>

</CENTER>

@IS_SET()

%IF (($(PAYMENT_METHOD) == "SET") ||($(PAYMENT_METHOD) == "SETNV"))

@SET_TAXRULE_FLAG()

@SET_SHIPRULE_FLAG()

%ELSE

@GET_CONF_MESSAGE()

%ENDIF

@GET_SHOPPER_TYPE()

@GET_ORBILLTO()

@SHOPPER_INFO()

@SHOPPER_SHIPTO_INFO()

@DISPLAY_DETAILS_LIST()

@DISPLAY_CHARGES_MerchantTax()

%if (CreationFlag == "True")

@UPDATE_CREATION_ACCESS()
204 Exploring Net.Commerce Hosting Server

<center><a

href="/cgi-bin/ncommerce3/ExecMacro/ncadmin/sitemgr/creation_access.d2w

/report?merfnb=$env.merchant_id$">Click here to create your on-line

store!</center>

%endif

@DISPLAY_CUSTOM_NAVBAR()

</body>

</html>

Save this file and exit. This new macro will update the database with a flag
granting store creation access if it has been purchased.

5. Stop and restart the Net.Commerce instance, administrator server and
webserver as directed in "Installing and Getting Started Guide",
GC09-2808-01.

G.3 National language support

We have uncovered a problem with the use of non-US characters in the
catalog editor, it will not accept any specific national characters. We have
made a modification to the script that converts the catalog data to XML.

<inst. dir.>/NetCommerce3/Tools/public/javascript/convertToXML.js

function replaceSpecialChars(obj)
{
 var string = new String(obj);
 var result = "";
 var xtnd = 0;

 for (var i=0; i < string.length; i++) {
 if (string.charAt(i) == "<") result += "<";
 else if (string.charAt(i) == ">") result += ">";
 else if (string.charAt(i) == "&") result += "&";
 else if (string.charAt(i) == "’") result += "'";
 else if (string.charAt(i) == "\"") result += """;
/* This line converts all non-US ascii charaters to entities */
 else if (string.charCodeAt(i) > 127) result += "&#" +
string.charCodeAt(i).toString() + ";";
/**/
else result += string.charAt(i);
 }
 return result;
}

Customization of NCHS on Windows NT 205

206 Exploring Net.Commerce Hosting Server

Appendix H. Special Notices

This publication is intended to help professionals who need to plan for and
implement the IBM Net.Commerce Hosting Server on RS/6000. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by Net.Commerce Hosting Server
or Net.Commerce. See the PUBLICATIONS section of the IBM Programming
Announcement for IBM Net.Commerce Hosting Server Version 3.1 for more
information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
© Copyright IBM Corp. 1999 207

them into the customer’s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Lotus and Domino are trademarks or registered trademarks of Lotus
Development Corporation.

Solaris, Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and/or
other countries.

IBM  AIX DB2
DB2 Universal Database RS/6000 RISC System/6000
WebSphere Net.Data IBM Payment Server
SecureWay
208 Exploring Net.Commerce Hosting Server

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries. (For a complete list
of Intel trademarks see www.intel.com/tradmarx.htm)

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Special Notices 209

210 Exploring Net.Commerce Hosting Server

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 211

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
212 Exploring Net.Commerce Hosting Server

Index

C
Checkout flow 25, 29

Billing address 29
New field 44
Order confirmation 30
Payment information 29
Shipping address 29

CHS Services Store 57
Command

OrderProcess 45
Commands

OrderProcess 45
Commerce Hosting Server services store 90
Compile C++ code 46
Configuration

Relationship 15
Create a Store 18
creation_access.d2w 93
CSPstoremodel 30
Customization

Impact of 15

D
DB2

Create a new table 41
Delete a table 43
Script 42

Default layout files 19

F
Files

About_Us.html 21
AddGiftMessage.db2.sql 47
addGiftMessage.dll 46
addradd.d2w 45
create_store.html 38, 39
csp_cat.d2w 32, 34
csp_ord_ok.d2w 58, 60
cspGenRptStore.d2w 44
gftmsg.d2w 40, 43
gftmsg2.d2w 43
index.html 21
libaddgiftmessage.a 46
Main.tem 50
manage_store.html 38, 39
© Copyright IBM Corp. 1999
merchantTool.xml 58
navigation.html 63
nchs.jar 58
OpenStore.cpp 61
OpenStore.nt 63
ord_ok.d2w 58
ord_pay.d2w 45
order_ok.d2w 58
orderDetails.tem 50
orderMgmtTasks.xml 49
ReservedDirectoryNames.properties 23
site.sdb 18, 20, 21

L
Layout files 18

M
mall wide navigation

frame 64
macros and html files 67

manage orders menu
multiple selection 6
order details page 47, 48

Merchant
HTML directory 20
Preloaded html files 20

Merchant reference number 18
Find the 19

Merchant specific customization 17
Merchant tool 40

Add menu item 36
Catalog 26
edit catalog 57
gift message 51
manage files 20
manage orders 48, 49
Manage Store 57
Manage Your Store 48
New Net.Data macro 40
publish 19, 21
Quick order 31, 32, 33
Set Up Your Store 39
upload files 20
Vertical scroll bar 38

merchant tool 74
Add a menu item 74
213

merchantTool.xml file 74
mToolsNLS.properties file 75
nchs.jar file 75

mtoolTasks.xml 87
MultiPurpose Generator (MPG 35

N
navigation.html 96
Net.Commerce Hosting Server

tables
MADDFEATURE 42
MCSPINFO 21, 22, 23, 41
MERCHANT 18, 41
ORDERS 46, 50, 51
SHOPPERS 21

Net.Data
new functions

GET_GIFTMESSAGE() 45
New macro 40

new_ord_ok.d2w 98

O
Off-line payment 30
On-line payment 30
ord_ok.d2w 97
OrderItemUpdate 33, 34
Overridable function 46

AddGiftMessage 46
C++ source code 46
DoNothingNoArgs 46

P
Payment Server 2
Plug-In

Catalog editor 1
catalog editor 3
Mass Import 1
merchant tool 2
remote contents 5

Preloaded layout files 19
Product reference number, obtaining 92
ProductDisplay 32, 33
Publish store 22

Q
Quick 32

R
Register.tem 85
restriction on merchants

Merchant reference number 72
product SKU 72
SHFIELD1 72
SHOPPER table 72

S
shfield2 97
shopper table 97
Shopping flow 25

catalog index page 26
Category items 31, 32
category items page 26
default shopping flow 30
Product page 27, 31
Shopping cart 28, 31

store creation 84
store creation access 90
Store reference number, obtaining 92
StoreInfo.tem 84
Submit button 41

T
Tasks

CTnchs.order_mgmt.Main 49
EXT_ORD_PROC 46, 47
ext_ord_proc 60

Text translation file 33
Try and Buy 64

X
XML

C++ 14
example 14
Introduction 13
references 14
syntax 14
tags 13
214 Exploring Net.Commerce Hosting Server

© Copyright IBM Corp. 1999 215

ITSO Redpaper Evaluation

Customizing Net.Commerce Hosting Server
REDP0022

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com/
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

P
ri

nt
ed

 in
 t

he
 U

.S
.A

.
R

E
D

P
00

22

Customizing Net.Commerce Hosting Server REDP0022

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. The NCHS Plug-In
	1.1 Overview
	1.2 New merchant tool features
	1.3 Installing the Plug-in on an existing NCHS system
	1.4 Migrating on AIX

	Chapter 2. Overview of NCHS customization
	2.1 Overview XML in NCHS Plugin
	2.1.1 Introduction to XML
	2.1.2 XML configuration files in NCHS

	2.2 Impact of customizations

	Chapter 3. NCHS advanced customization
	3.1 Overview
	3.2 The merchant store model
	3.2.1 Creating a new store
	3.2.2 Changing the default store layout
	3.2.3 The merchants HTML directory
	3.2.4 Publishing a store

	3.3 Changing shopping flow
	3.3.1 Default Shopping and checkout flow
	3.3.2 Customizing the default shopping flow

	3.4 Adding a new function to NCHS-"Gift message" exmaple
	3.4.1 MultiPurpose Code Generation language (MPG)
	3.4.2 Add/Remove a menu item in the merchant tool
	3.4.3 Change the size of the merchant tool window
	3.4.4 A new Net.Data macro for the merchant tool
	3.4.5 Modify the checkout flow
	3.4.6 Adjust the order details page

	3.5 Creating multiple default store layouts
	3.6 Customizing the process to sell a merchant store
	3.6.1 Selling a merchant store
	3.6.2 Try and Buy

	3.7 Adding mall-wide navigation feature
	3.8 Different levels of service by each merchant
	3.9 Changing store creation process
	3.9.1 Introduction
	3.9.2 Changing store creation process

	3.10 Restricting creation of merchant store
	3.10.1 Introduction
	3.10.2 Restricting creation of merchant store

	Appendix A. Net.Data macro for the category items page
	Appendix B. Net.Data macros for the merchant tool
	Appendix C. Net.Data macro for the checkout flow
	Appendix D. Source code for AddGiftMessage OF
	Appendix E. Template file for the order details page
	Appendix F. A MultiPurpose Code Generation language
	F.1 Purpose
	F.2 Introduction
	F.2.1 What is MPG?
	F.2.2 Why MPG?

	F.3 Data Model
	F.3.1 Declaring model variables
	F.3.2 Creating the model
	F.3.3 Creating the model from a file

	F.4 Language Elements
	F.4.1 Lexical Structure
	F.4.2 Declarations
	F.4.3 Data Types
	F.4.4 Expressions and Operators
	F.4.5 Statements
	F.4.6 Procedures
	F.4.7 Transformations
	F.4.8 4.10 Including other templates

	Appendix G. Customization of NCHS on Windows NT
	G.1 Customizing store creation process on Windows NT
	G.2 Restricting creation of merchant store on Windows NT
	G.3 National language support

	Appendix H. Special Notices
	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	Index
	ITSO Redpaper Evaluation

